
Startup Project
Flush This: A replication of FLUSH+RELOAD

Erickson, Jeremy
University of Michigan, Ann Arbor

Advisor: Professor Kevin Fu

1 Summary of Results

• Verified cache timing and threshold information.

• Experimentally reproduced shared pages and cache
timing side channel.

• Was unable to regenerate secret keys from cache timing
side channel.

2 Introduction

In this paper, I attempt to replicate the work presented
by Yuval Yarom and Katrina Falkner at Usenix 2014 enti-
tled FLUSH+RELOAD: A High Resolution, Low Noise L3
Cache Side-Channel Attack[5]. This paper presents a new
variant on the standard cache side channel attack leverag-
ing artifacts of shared memory and cache timing to infer the
instructions another process is executing. From that, the au-
thors are able to accurately guess the component bits of the
secret key used in the target Gnu Privacy Guard (GPG)[2]
application.

Cache side-channel attacks are a well-known attack cat-
egory. For one process (the Spy) to infer data about an-
other process (the Victim), the Spy typically fills the pro-
cessor cache by loading data from memory, then periodically
checks to see which data is evicted from the cache as the Vic-
tim loads other data into memory. Depending on the cache
architecture and which cache lines are evicted, the Spy may
be able to infer which data the Victim has loaded into mem-
ory, thereby gaining insight into the operation of the Victim
process. This is of particular interest in scenarios such as
when the Victim process is encrypting or decrypting a mes-
sage with a secret key. The ability to capture all or part of
the bits of the secret key can allow an adversary to decrypt
future (and past) secret communications, masquerade as a
particular entity, or surreptitiously modify data in transit.

In the last decade, we’ve seen the shift from single-core
processors to multi-core processors. In such an environment,
the Spy faces an additional hurdle — the Victim process may
be executing on a different processor core, and may therefore

not share the same upper-level caches. In recent Intel proces-
sors, the L1 and L2 caches are replicated for each individual
core and the L3 cache, or Last Level Cache (LLC) is the only
shared cache. Recent cache side-channel attacks[4] have fo-
cused on this cache for reliability when the Spy and Victim
processes do not share the same core.

3 Background

3.1 Shared Pages

When a process is executed, the operating system reads its
code and data from disk and makes a copy in memory. So
that two processes may not interfere with each other, each
process is given its own virtual address space. Each 4096
byte (on today’s hardware) segment (called a page) of vir-
tual memory is mapped to a corresponding page in physical
memory.

In several circumstances, the operating system will map
two virtual pages from different processes to the same phys-
ical page. For instance, shared libraries, which are libraries
loaded at runtime by multiple processes simultaneously, will
map to the same read/execute-only physical pages because
the library will be identical in both processes. Why should
the operating system need to allocate twice the memory for
duplicate code?

In another case, hypervisors will often enable explicit
memory deduplication via the Kernel Same-page Merging
functionality in modern systems. In this scenario, the op-
erating system will periodically scan physical memory for
duplicate pages, and if it finds them, it will update the page
table to map all virtual pages with the same contents to the
same single physical page. It will also mark that page "Copy
on Write" such that if any process modifies the page, it will
first create a new copy. This continues to preserve the impor-
tant memory isolation between processes. It is important to
note that this feature is only available on systems that have
explicitly enabled it, and further only for processes that have
also specifically enabled it. Hypervisors frequently enable
this feature because the virtual machines (VMs) they run of-
ten contain very similar memory. A huge memory savings

1



can be realized by deduplicating the identical pages between
multiple VMs.

As it turns out, there is apparently a third, largely un-
documented way for processes to share the same virtual-to-
physical page mapping: One process can use the mmap func-
tion to manually map a second process’s instructions and
data into its own virtual memory space. Presumably because
the two sets of virtual pages originated from the same file
and are otherwise identical, they appear to map to the same
physical page. This technique does not appear to be widely
known, and is only obliquely mentioned in [5] on page 6.

3.2 Cache Architecture

The modern Intel processor architecture uses a three-level
physically-addressed inclusive cache hierarchy. Inclusive
means that as instructions are retrieved from memory, they
will populate all three levels of the cache. For the purposes
of this attack, it is important that the LLC be populated
with instructions as they are executed, as this attack is de-
signed to work across cores and the LLC is shared between
all cores. Additionally, the cache is physically-addressed,
which means that if an instruction is cached by one process,
it will be present in the cache when another process requests
it. By measuring the time it takes to load an instruction, the
Spy process can infer whether or not the Victim process has
recently executed it.

There is a special instruction, clflush, that allows any user
process to flush a particular address from all cache layers.
When used in conjunction with a shared memory address, it
will evict the shared memory from the cache.

3.3 RSA Algorithm

The RSA algorithm is complex and a discussion of how it
works will not be presented here. However, for the pur-
poses of this attack it is important to describe the sequence
of mathematical operations that will occur during the process
of encrypting or decrypting a message with a secret key.

The implementation of GPG version 4.1.13 uses the
square-and-multiply exponentiation algorithm which scans
the bits of the binary representation for the sub-keys dp =
d mod (p-1) and dq = d mod (q-1). With these keys, it is
possible to factor n and retrieve d.

For each bit of the subkeys scanned, GPG will either per-
form a square operation followed by a modulo reduce opera-
tion, if 0, or a square operation followed by a modulo reduce
operation followed by a multiply followed by another mod-
ulo reduce operation, if 1.

4 Attack Description

To perform this attack, the Spy process first mmaps the GPG
binary into its address space. This maps the GPG pages in
the Spy process to the GPG pages in the Victim process.

Next, the Spy process repeatedly loads target memory ad-
dresses for the square, reduce, and multiply functions, times
how long it takes to retrieve the instructions, and uses the
clflush instruction to flush the instruction from the cache.
Since the instruction is flushed every cycle, the expectation
is that on the next memory load, it will take a relatively long
time to retrieve the instruction from main memory. However,
if it takes a short time to retrieve the instruction, the Spy can
infer that the instruction was cached, and was therefore exe-
cuted by the Victim process.

Using the ability to infer which instructions the Victim
process is executing, the Spy can produce a sequence of
square-reduce-multiply-reduce (1 bit) and square-reduce (0
bit) operations and recreate the RSA subkeys with relatively
high accuracy.

5 Replication

In replicating this work, I attempted to follow the authors’
process as closely as possible. I used similar Intel hardware
and used the provided assembly code for flushing cache in-
structions and timing instruction retrieval.

5.1 Cache Timing Thresholds
First, as done in the paper, I experimentally determined the
length of time it takes to perform a memory read when
the line is cached and not cached by repeatedly loading a
memory address both with and without flushing it from the
cache. When the line is cached in the L1 cache, it takes
approximately 37 ticks, or processor cycles, to retrieve the
instruction. When the instruction is not cached at all, it
takes approximately 210 ticks, although with a high degree
of variance. When running the later experiment, I observed
that many instruction retrievals took approximately 96 ticks,
while some took approximately 44.

[3] asserts that the instruction retrieval time from the L1
cache is 4 ticks from the L2 cache is 10 ticks, and 65 ticks
from the L3 cache when the line is shared in another core.
Assuming the fixed cost of the code to perform the mem-
ory read is approximately 33 ticks, it follows then that my
experimental cache access times, minus overhead, were ap-
proximately 4 ticks, 11 ticks, 66 ticks, and 177 ticks for L1,
L2, L3, and main memory, respectively. This agrees with
[3].

While access times to main memory differ significantly, in
only very rare circumstances did my main memory accesses
(including overhead) dip below 200 ticks, and never below
150 ticks. Therefore, I believe a threshold value of 120 ticks
to determine whether an instruction is cached or not, as cho-
sen in the paper, is reasonable.

5.2 Finding Instructions to Time
Contrary to how the square-reduce-multiply-reduce routine
is presented in the paper, the GPG code base is com-

2



plex and poorly documented. The main square- reduce-
multiply-reduce routine is found in mpi-pow.c, and the
calls to the square, multiply, and reduce functions are the
mpih_sqr_n_basecase, mul_n_basecase, and mpih_divrem
functions, respectively. In the mpih_sqr_n_basecase and
mul_n_basecase functions, I selected an instruction inside
a loop and not near the beginning of the function, to avoid
spurious retrievals due to speculative execution. However,
the mpih_divrem function is a large switch statement. So as
to select an instruction that is executed on every invocation
of the function, I selected the return instruction at the end of
the function.

5.3 Inferring Instruction Execution
Using a separate Spy process, I divided time into a series of
time slices of 2500 ticks, as done in the paper. I repeatedly
flushed and reloaded the instructions at the specified mem-
ory locations for the square, multiply, and reduce functions.
During normal computer operation with no Victim process
running, all instruction retrievals came from memory, as ex-
pected. When the Victim process began to run, immediately
the spy process detected a sequence of instructions retrievals
that took less time to retrieve than the threshold. Each of
these instruction retrievals indicates that the Victim retrieved
and executed the instruction. From this, I generated a set of
operations that the Victim executed during each time slice,
some combination of square, multiply, reduce.

5.4 Reproducing Secret Keys
As described in Section 3.3, the secret subkeys can be re-
produced by watching the sequences of square-reduce and
square-reduce-multiply-reduce, which indicate bit values
of 0 and 1, respectively. Using this model, I identified
sequences of square-reduce and square-reduce-multiply-
reduce, and built a sequence of 0’s and 1’s.

I retrieved the GPG private key, stripped out the GPG
header information, and translated the hex keys for dp and
dq to binary. I then manually compared them against the
sequence of 0’s and 1’s generated by the Spy process. Un-
fortunately, they did not appear to match or even be similar.
Section 6.3 discusses this problem.

6 Discussion

6.1 GPG and Static Linking
As mentioned in Section 3.1, [5] describes several ways in
which two processes may share the same physical page.
Unfortunately, from the paper’s Introduction section, it is
implied that GPG’s mathematical operations are part of a
shared library. Because of this, I originally tested this side
channel on the libc shared library, for which I was able to
clearly determine that the virtual addresses for both Spy and
Victim processes mapped to the same physical pages. Upon

discovery that GPG is entirely statically linked, I scoured the
paper for an explanation of how the Spy process may have
shared physical pages with the Victim process and found a
reference to mmap on page 6.

However, after using mmap to load the GPG code
into the Spy process’s address space, I used the
/proc/<pid>/pagemap files for both the Spy and Victim pro-
cesses to determine to which physical pages their virtual
GPG pages mapped, and regardless of the options I used to
do the mapping, the page frames always differed.

I was therefore surprised to discover that the Spy process
was still able to retrieve cache timing information from the
Victim process executing specific instructions. It is possible
that this discrepancy is due to a coding or other experimental
error. It is also possible that this indicates a mystery worth
investigating further, such as a bug in Linux.

6.2 Syscalls
In my initial approach, I had the Spy process detect uses of
the printf function from the libc shared library. This pro-
duced inconsistent instruction retrieval times. I believe this
is because invocations of the printf function that write to
the terminal require a syscall, which forces a context switch.
When calling printf frequently, I suspect the resulting fre-
quent context switching caused the irregular and much larger
retrieval times between 400 and 800 ticks that I observed.

6.3 Trace Resolution
As mentioned in Section 5.4, my regeneration of the secret
subkeys did not result in subkeys matching the originals.
In an effort to narrow down the scope of the error, I man-
ually reviewed several segments of ordered inferred opera-
tions (square, multiply, and reduce) and confirmed that my
code to turn these traces into individual bits was behaving
as I intuited the bits to be. Given that this code appears to
be operating correctly, I suspect that the error comes from
insufficient accuracy of the side channel itself in my experi-
mental setup. There are many factors that could contribute to
this, such as picking unsuitable instructions to watch for ex-
ecution or operating while the system was performing other
operations that may have interfered.

In an effort to determine if I had made a fundamental error,
I cloned and built a GitHub-hosted flush-reload project[1].
This was a replication of the FLUSH+RELOAD project in
2014, soon after the original paper was published. Unfortu-
nately, this code did not work as advertised, presumably be-
cause when I compiled GPG, all of the static addresses they
had used were slightly different than the compiled binary
on my system. Using their annotated instruction addresses,
I regenerated new addresses that referred to approximately
the same assembly instructions and ran their code. Unfortu-
nately, despite detecting large numbers of square, multiply,
and reduce operations, their code was unable to generate se-
cret subkeys either.

3



References

[1] Daniel Ge, David Mally, and Nick Meyer. Implemen-
tation of the FLUSH+RELOAD side channel attack.
URL: https : / / github . com / DanGe42 / flush -
reload.

[2] GnuPG. URL: https://www.gnupg.org/.

[3] David Levinthal. Performance Analysis Guide for
Intel R© Core

TM
i7 Processor and Intel R© Xeon

TM
5500

processors. URL: https : / / software . intel .
com/sites/products/collateral/hpc/vtune/
performance_analysis_guide.pdf.

[4] Fangfei Liu et al. “Last-Level Cache Side-Channel At-
tacks are Practical”. In: IEEE Symposium on Secu-
rity and Privacy 2015. May 2015. URL: http : / /
ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=7163050.

[5] Yuval Yarom and Katrina Falkner.
“FLUSH+RELOAD: A High Resolution, Low Noise,
L3 Cache Side-Channel Attack”. In: 23rd USENIX Se-
curity Symposium (USENIX Security 14). San Diego,
CA: USENIX Association, Aug. 2014, pp. 719–732.
ISBN: 978-1-931971-15-7. URL: https : / / www .
usenix . org / conference / usenixsecurity14 /
technical-sessions/presentation/yarom.

4


