
Project Proposal
UbiCrypt: Making ubiquitous encryption compatible with enterprise security

Weisse, Ofir Trippel, Timothy Erickson, Jeremy
EECS 589, Fall 2015

University of Michigan, Ann Arbor

1 Introduction

With recent data breaches[6], many in the security com-
munity are calling for ubiquitous encryption to become
the norm. That is, all online communications, whether
secret or mundane, should be end-to-end encrypted. Sev-
eral well-known projects[1, 9] are pushing for all web
traffic to be encrypted with Transport Layer Security
(TLS), also known as HTTPS. As this trend continues,
users will become more secure from intermediate enti-
ties snooping on their data or being able to modify it in
transit. Ubiquitous encryption is very promising.

However, the same defenses that protect users against
a malicious third party viewing or modifying data in tran-
sit block enterprise security measures from being able to
introspect on corporate traffic and provide legitimate se-
curity services to the company. For instance, a company
may use Snort[4], a common network Intrusion Detec-
tion System (IDS), to parse incoming network traffic for
signatures indicating malware has been downloaded by
an employee. If the network flow is encrypted, Snort will
be unable to identify malicious signatures[8].

In enterprise environments, often the need to intro-
spect on corporate network traffic is higher than the need
for true end-to-end security. The naive solution in place
today is for a company to simply man-in-the-middle its
employees’ secure connections at the enterprise gate-
way[7]. It does this by supplying an enterprise-owned
root Certificate Authority (CA) to each user and creating
two encrypted sessions for each connection — one be-
tween the client and gateway and one between the gate-
way and server.

This has several downsides stemming from the fact
that the client must trust the gateway to securely connect
to the server on its behalf. The gateway may trust a cer-
tificate that the client does not, thus reducing the client’s
ability to discern untrusted connections, or the gateway
may not trust a certificate that the client does, thus ei-
ther blocking the connection or making the connection

without the assurance of authentication the client would
be able to achieve on its own. For instance, one of the
core tenets of public/private key authentication is that,
even without a Public Key Infrastructure (PKI) to dis-
tribute and validate keys, the client can manually import
a public key as trusted and form a secure connection to
the owner of the corresponding private key. Not so if the
gateway intercepts the connection.

2 Approach

Instead, we propose a new approach in which the client
and server are allowed to form a secure end-to-end en-
crypted connection. To enable the gateway to introspect

Figure 1: Comparison of existing proxied network flows
(left) in an enterprise network vs. proposed proxied net-
work flows (right) in an enterprise network.

1



on client traffic, we will provide a mechanism for the
client to securely leak its session key to the gateway. The
session key is unique to the specific connection, so in
contrast to other solutions[5] that require leaking private
keys, the longevity of the leaked key is short.

With the leaked session key, we will also provide the
gateway with a utility to identify encrypted flows, de-
crypt them, and pass them on to an IDS. This will pro-
vide a capability equivalent to the existing solution, yet
protect the integrity of a true end-to-end encrypted con-
nection.

Specifically, we propose to build this capability into
the QUIC[3] protocol, as it:

• Is implemented at the application layer, and there-
fore more accessible for modification than HTTPS.

• Is a recently-developed protocol and as adoption is
still growing, there is more of a chance to have our
proposed functionality incorporated in the mainline.

3 Project Plan

Given this project will be focused on the design of
a new system, this project will be broken down into
several phases. These will consist of four main phases:
infrastructure, client application, proxy, and evaluation.
For infrastructure setup, we plan to use minimega[2] to
deploy a topology of virtual machines for the evaluation
of our project. These machines will consist of a) one or
more clients that attempt to retrieve websites and initiate
QUIC sessions and b) one gateway that proxies traffic for
all clients. We plan to use connections to real websites as
the servers in our model. For the client application phase
we propose modifying the QUIC source code within
Chromium browser. This will allow us to implement
our proposed introspection scheme on a common and
real-world use case. Our gateway infrastructure will
proxy clients’ ingress and egress traffic and decrypt
QUIC-encrypted flows for Snort to process. Lastly our
project will be evaluated as described below. Below we
show our project milestones and a projected timeline.

Project Timeline:
Milestone #1 - Infrastructure - Due 10/30
Milestone #2 - Client Application - Due 11/13
Milestone #3 - Gateway Deployment - Due 11/20
Milestone #4 - Evaluation - Due 11/27
Milestone #5 - Report/Presentation - Due 12/4

4 Evaluation

In order to evaluate the implementation we will test it
from the perspective of three actors. First is the client.

Does the client notice any difference from regular brows-
ing? Does he receive any suspicious warnings from the
browser? The second actor is the middle box. Can the
middle box inspect the ongoing traffic in a way that is
useful for it and allows it to decide if the communication
is spurious or not? Last but not least, the third actor is a
malicious third party. Can he leverage the new technol-
ogy to gain information about the encrypted communi-
cation?

References

[1] Let’s Encrypt. URL: https : / / letsencrypt .

org/.

[2] minimega: a distributed VM management tool.
URL: http://minimega.org/.

[3] QUIC, a multiplexed stream transport over UDP.
URL: https://www.chromium.org/quic.

[4] Snort. URL: https://snort.org/.

[5] SSL Decryption. URL: https://www.gigamon.
com/products/technology/ssl-decryption.

[6] Edward Moyer. NSA disguised itself as Google
to spy, say reports. Sept. 12, 2013. URL: http :
/ / www . cnet . com / news / nsa - disguised -

itself-as-google-to-spy-say-reports/.

[7] Tim Chiu. The Growing Need for SSL Inspection.
June 18, 2012. URL: https://www.bluecoat.
com/security/security-archive/2012-06-

18/growing-need-ssl-inspection.

[8] Joel Esler. SSL/TLS. Dec. 4, 2012. URL: http://
manual.snort.org/node147.html.

[9] Barry Schwartz. Google SSL Default, Goodbye
Query Referrer Data. Oct. 19, 2011. URL: https:
/ / www . seroundtable . com / google - ssl -

drops-query-data-14188.html.

2


