UbiCrypt

Trustworthy Encryption Everywhere

Ofir Weisse, Tim Trippel, Jeremy Erickson

Motivation

- Ubiquitous Encryption
 - "HTTPS Everywhere"
 - Let's Encrypt
- Enterprise security policy requirements
 - Network introspection
 - Auditing
 - Intrusion Detection
 - Parental Controls

CONFLICT

What's Wrong - TLS Splitting

- Violates principle of E2E security
- Gateway & client may trust different Root CA sets
 - {GA} > {CL} : Client may connect to server it does not trust
 - {GA} < {CL} : Gateway cannot authenticate server:
 - Gateway blocks client connection
 - Gateway degrades security

UbiCrypt to the Rescue

- Allow E2E connection between client and server
- Client securely leaks session key to gateway
- Gateway can introspect on traffic
- Implementation
 - Modify QUIC on client
 - Application layer
 - New accepting changes
 - $\blacksquare \quad \text{No modification of server necessary} \rightarrow \text{DEPLOYABILITY}$
 - Add gateway support

QUIC Overview

- Connection establishment phases:
 - Ephemeral key negotiation
 - Retrieve server public key
 - Negotiate ephemeral keys
 - Setup forward secret secure session

Upgrading QUIC to UbiCrypt on Client

- Goals:
 - Deployability: minimum change to QUIC source code
 - Performance: minimum latency
- Modified QUIC crypto module: write keys to file
- Added external key sharing Python module

Gateway Architecture

- Two part architecture
 - filtering and forwarding QUIC flows
 - leaked key server
- Filter/Forward
 - iptables for kernel space filtering
 - iptables library extension: NFQUEUE
 - ScaPy for user space processing
 - key-flow matching and management
- Key Server
 - \circ run simple server on port 50000
 - \circ sends leaked keys to filter/forward software

Evaluation

- Built virtual network infrastructure: minimega
- Performance metrics:
 - Latency: small page (1.6KB) retrieval time
 - Throughput: large page (80MB) retrieval time

Performance

Demo

Discussion

- Optimization
 - Switching to faster language
 - Moving to kernel
- First packet introspection
 - "Unlock" packet plaintext of first packet
 - Leak client's half of ephemeral key

Questions

