
Cloaking Order in Chaos
Invisibly subverting the Linux random number generator via the hypervisor

Jeremy Erickson (jericks) Andrew Quinn (arquinn) Timothy Trippel (trippel)
EECS 588, Winter 2016

University of Michigan, Ann Arbor

1 Problem

In the computer and network security domain, nation
state actors (NSAs), are typically characterized as having
a significant amount of computing resources, intelligent
researchers and engineers, and legal authority that private
sector organizations do not possess. With this kind of
power, NSAs have many documented cases of using their
strategic advantage to subvert modern computing and
communication systems to gather intelligence[3][4][5].

In this project we propose to investigate how an NSA
could leverage its resources to gain widespread access to
encrypted communications while avoiding public criti-
cism through secrecy and stealth. Specifically, we focus
on a hypothetical scenario in which the NSA has, through
exploitation, coercion, or another method, acquired supe-
ruser privileges on some fraction of the host machines of
a cloud services provider.

Despite its power, we make one critical assumption
about the NSA that we believe is reasonable given the
existing political and legal climate:

The NSA must act in a manner of utmost
stealth. Detection of any actions by any non-
NSA actor will lead to a full investigation and
removal of superuser privileges on the cloud
provider, as well as damage to public opinion.

Under this constraint, we propose that an NSA may
decide to focus on subverting the Random Number Gen-
erator (RNG) of virtual machines through control of the
hypervisor. This has several attractive qualities. First, it
is likely possible to achieve control of the RNG without
having to modify the virtual machine itself, meaning a
cloud tenant, even one that inspects checksums of critical
system components such as the kernel, should be unable
to detect any subversion without specifically searching
for artifacts of the used technique. Second, with control
over the RNG, cryptographic keys become predictable,
and so there is no need to exfiltrate encryption keys out of

the cloud infrastructure. Encrypted communications can
be monitored from outside the cloud infrastructure with
no extraneous, suspicious key leakage shadowing each
new encrypted message. Third, if the NSA can control
the RNG with high enough precision, it should be pos-
sible to cause the output random numbers to still appear
truly random, and only predict them with knowledge of
some NSA-controlled secret, thus maintaining the ten-
ant’s security against all non-NSA actors.

2 Context

Alt et al. did prior work in this area for a course project
[1]. While their project looked at the ability of a hyper-
visor to control a guest OS’s random number generator,
they did not approach the problem from the standpoint
of a NSA or focus on detection of such methods. The
main difference between our proposed work and their
prior work is our focus on stealth. Alt et al. demon-
strated that the random number generation of a guest OS
can be controlled by a hypervisor; we will extend this to
identify whether this control can occur in a reasonably
stealthy manner, or not, and what limitations to this ap-
proach exist. Further, from investigative work we have
already done, we have identified one additional hurdle
to accomplishing this task in a stealthy manner without
guest OS cooperation. To monitor and modify the run-
time memory of the virtual machine, we must be able
to determine the precise memory location of a variety of
data structures within the guest OS. The canonical way
of accomplishing this task involves using a kernel mod-
ule from within the guest to pull this information from
runtime symbols and manually import it back to the in-
trospection application. However, this approach will not
work in our model, which cannot rely on guest coopera-
tion.

Other work in the area of random number genera-
tion in virtual environments [2] has primarily focused on
the unintentional side-effects of low boot-time entropy

1



Figure 1: Diagram of virtualized environment on host
machine using the KVM hypervisor and libvmi inspec-
tion tool

across virtual machines that are replicated from a com-
mon image. This is only slightly relevant to our proposal,
as changes made to the Linux RNG to combat this low
boot-time entropy need to be accounted for in any attack
against the RNG, but can likely be controlled in the same
manner as other sources of entropy can.

3 Approach

There are a number of ways that the state-level actors
could alter the behavior of a hypervisor to control the
random numbers that are generated by a particular guest
OS. To control a guest OS’s random number generator,
a hypervisor has to either control the inputs to the en-
tropy pool of that guest OS, which is later used to derive
random numbers, or separately generate and replace the
returned random numbers. Orthogonally, if the guest OS
requests a random number via the rdrand instruction,
the NSA could emulate the result of the instruction and
return a controlled number.

Alt et al. showed that a hypervisor can intercept ac-
cesses to random data[1]. We first plan to reproduce their
initial results, with a focus on the KVM hypervisor, and
then plan to investigate whether a guest OS can detect
that this entropy tampering is occurring. We note that
even though typically defenses that detect a specific at-
tack often turn into cat-and-mouse games between the
attacker and defender, under our initial assumption, the
detection of the NSA even a single time is sufficient
to cause a significant disruption to the NSA’s ability to
maintain their capability.

We also plan on investigating the ability of a hypervi-
sor to control the sources of entropy into an entropy pool.
Alt et al. suggest that this approach may be infeasible,
however we hope to be able to refute this claim. Since

the APIs that feed entropy into the pool are well defined
and modern Virtual Machine Introspection (VMI) tools
allow us to introspect arbitrary memory addresses in a
guest OS, we should be able to control all input into the
entropy pool. However there are a number of data races
within the Linux kernel’s entropy pool logic which add
non-determinism to the pool itself. Our current idea is to
provide synchronization to the entropy pool through the
VMI itself, thereby preventing these non-deterministic
changes to the entropy pool.

To implement these attacks we plan to use the libvmi
virtual machine introspection library to interact with the
KVM hypervisor and control the guest VM. KVM runs as a
module within the Linux kernel and emulates the hard-
ware for guest OSes. libvmi is a cross-platform VMI
library which allows low level introspection into the be-
havior of a guest OS. The system architecture is shown
in Figure 1.

4 Evaluation

Unfortunately, since our proposal is somewhat ex-
ploratory, the only metric we can be absolutely certain
to be able to use is whether we are able to generate de-
terministic output from the Linux Random Number Gen-
erator, or not. The rest of our approach involves inves-
tigating the side-effects required of any implementation
that does so, and to what extent these can be detected.
One ultimate validation of this approach would be if we
could detect such an attack in the wild, but since this at-
tack is currently hypothetical, the absence of detection in
the real world should not be construed as failure.

5 Scope

In the pursuit of building a working prototype, we have
several options we can pursue. We plan to investigate
both approaches (intercepting RNG accesses and control
of sources of entropy), and implement at least one work-
ing attack by the checkpoint date. We then plan to use the
remaining time to explore the creation of a kernel module
that can reliably detect our attack.

Outside the scope of this course project, we plan to
continue this work, explore both attack vectors and ap-
propriate detection methods for each, and deploy our
detection mechanisms across prominent cloud service
providers to attempt to detect such an attack in the wild.

We also plan to open-source our work so that the rest
of the community can benefit and build on top of these
techniques without needing to reimplement them.

2



References

[1] Matthew Alt et al. Entropy Poisoning from the Hy-
pervisor. Unpublished class project. 2015. URL:
https://courses.csail.mit.edu/6.857/

2016/files/alt-barto-fasano-king.pdf.

[2] Adam Everspaugh et al. “Not-So-Random Num-
bers in Virtualized Linux and the Whirlwind RNG”.
In: Proceedings of the 35th IEEE Symposium on Se-
curity and Privacy. 2014. URL: http://pages.
cs.wisc.edu/~ace/papers/not-so-random.

pdf.

[3] April Glaser. After NSA Backdoors, Security Ex-
perts Leave RSA for a Conference They Can Trust.
Jan. 30, 2014. URL: https://www.eff.org/
deeplinks/2014/01/after-nsa-backdoors-

security-experts-leave-rsa-conference-

they-can-trust.

[4] Olga Khazan. The Creepy, Long-Standing Prac-
tice of Undersea Cable Tapping. July 13, 2013.
URL: http : / / www . theatlantic . com /

international / archive / 2013 / 07 / the -

creepy - long - standing - practice - of -

undersea-cable-tapping/277855/.

[5] Mandient. APT1. Exposing One of China’s Cy-
ber Espionage Units. Feb. 19, 2013. URL: http:
/ / intelreport . mandiant . com / Mandiant _

APT1_Report.pdf.

3


