
Cloaking Order in Chaos

Jeremy Erickson Timothy Trippel Andrew Quinn

Subverting the Linux RNG via the Xen hypervisor

Motivation

Overview

● Nation State Adversary (NSA)
● Sophisticated, huge resources, not limited by law
● What have they done?

○ Stuxnet
○ APT1

● What could be next?
○ Target? = cloud services
○ Goal? = subvert crypto systems
○ How? = subvert RNG of VMs through the hypervisor

Threat Model

● NSA has total access to hypervisors at cloud provider
○ Coercion, “Gag order”
○ Collusion
○ Espionage

● NSA can run VM Introspection (VMI) software on the host
○ Can detect running OS and its version
○ Total control - can read and modify memory of guest VMs

● NSA must be stealthy
○ Detection leads to catastrophic program failure: loss of utility, political issues, etc.

Prevention is outside our threat model, as the
adversary has complete control over the system.

Attack

Architecture

● LibVMI
○ Integrates with KVM and Xen

hypervisors (Windows and Linux
support)

○ Provides functions to read and write
memory of running VM

○ Walks page tables and translates
virtual addresses to physical
addresses

○ Event support in Xen - Receive
callback on VM event (interrupt,
memory access, etc.)

(diagram courtesy of Alt et al. - https://courses.csail.mit.edu/6.
857/2016/files/alt-barto-fasano-king.pdf)

Linux Kernel RNG

LibVMI Hook Location

How to insert a breakpoint without GDB
Before

After

Stored for later use:
 0xe8

Int3 interrupt:
0xcc

Then, register callback (interrupt handler) for Int3 interrupt

Finding where random numbers are generated

Gets next 10 random bytes
 from entropy pool

Breakpoint 1
Find tmp

Breakpoint 2
Overwrite tmp

random.c
random.o

Overwrite them before
 copied to userspace

Overwriting random bytes

 As you can see, we
picked a very secure PRNG

Check actual random bytes

Check new “random” bytes

Overwrite!

Demo

Turns out there’s some overhead...
Approximately 3ms per 100 random bytes

● 100 random bytes = 10 buffers
● 1 buffer = 2 breakpoints
● 1 breakpoint = 2 LibVMI callbacks

~40 callbacks = 3 ms overhead

Potential way to reduce overhead:
● Overwrite random bytes in userspace

○ Avoid trapping to hypervisor every 10 bytes

>= 3 ms is likely detectable
This still limits an attacker to < 20 breakpoints.
Maybe < 6 breakpoints is difficult to detect?

Detection

Approach: Memory checks in kernel
Change your random.c to track entropy in the
system:

● If you see entropy unexpectedly change at
some point, you’ve been hacked!

● Requires integrity checks throughout the
code -- remove nondeterminism from
entropy pool

Advantages:

● Works against instruction pointer based
attacks

Disadvantages:

● Must perform integrity checks in same
places attack occurs (potentially
everywhere)

● High overhead
● Attacker can, in hindsight, subvert integrity

checks as well

Changing offsets

Changing any code in random.c will change addresses of critical functions

A sophisticated attacker may be able to predict
this and automatically detect offset changes

Attack offset 0xff348c

Attack now references wrong code

Where is buf?

Smart attacker faces a choice

Custom
Kernel Try to run existing attack on Kernel

Don’t run attack on Kernel

Detection!
- Kernel crash
- Track entropy

Timing detection!
Attacker’s
Decision Point https://www.usenix.

org/conference/woot15/workshop-
program/presentation/wang

Assumption:
Attacker cannot automatically
reverse-engineer custom kernel
without manual intervention

()
Upload to cloud

Parting thoughts

● Some user-level applications use their own RNG
○ Apache2 -> OpenSSL
○ GPG -> Libgcrypt -> sometimes own entropy pool

● Detection methods need to address the fact that
attacks can be located in userspace too

Questions?

