
Cloaking Order in Chaos
Subverting the random number generator via the hypervisor

Jeremy Erickson (jericks) Andrew Quinn (arquinn) Timothy Trippel (trippel)
EECS 588, Winter 2016

University of Michigan, Ann Arbor

Abstract
In the modern domain of computing, Nation State Adver-
saries (NSAs), are often characterized as having the most
resources, researchers, and legal authority. We investi-
gate a hypothetical attack vector an NSA could use to
gain widespread access to modern communications and
web services. We present the scenario in which an NSA
has obtained superuser privileges on a fraction of the host
machines of a cloud service provider. Specifically, we
investigate how an NSA can subvert a virtual machine’s
Random Number Generator (RNG) to produce determin-
istic outputs via the hypervisor.

In this paper we describe our attack prototype against
the Linux 4.4.6 kernel. Our attack subverts reads from
/dev/random and /dev/urandom and allows an at-
tacker to produce a deterministic byte stream. We extend
this attack to work against user space RNGs, specifically
the OpenSSL RNG which is used by modern web servers
such as Apache2 and NGINX. Finally, we describe a de-
tection scheme for the Linux RNG and discuss how we
can extend the scheme to work against this class of at-
tacks.

1 Introduction

In the computer and network security domain, the Na-
tion State Actor (NSA), is typically characterized as the
strongest adversary imaginable. With nearly an unlim-
ited amount of computing resources, funding, intelligent
cryptographers and engineers, and the legal authority to
get access to almost any information they need, this ad-
versary has been able to use its strategic advantages to
create sophisticated attacks which have subverted several
modern day computing and communication systems [3,
5, 6].

In this project we investigated how an NSA could
leverage its resources and abilities to gain widespread ac-
cess to modern communications and web services while

avoiding public criticism through secrecy and stealth.
Specifically, we focused on a hypothetical scenario in
which an NSA has, through exploitation, coercion, or
another method, acquired superuser privileges on some
fraction of the host machines of a cloud service provider
(i.e. has access to the hypervisor), such as those oper-
ated by Amazon (AWS [12]), Microsoft (Azure [16]),
and Google (Compute Engine [13]).

Despite its power, we make one critical assumption
about an NSA that we believe is reasonable given the
existing political and legal climate:

An NSA must perform offensive actions in a
manner of utmost stealth. Detection of offen-
sive actions by any non-NSA personnel will
lead to a full investigation and removal of supe-
ruser privileges on the cloud provider, as well
as damage to public opinion.

Under this constraint, we proposed that an NSA may
decide to focus on subverting the Random Number Gen-
erator (RNG) of virtual machines through control of the
hypervisor. This has several attractive qualities. First, it
is possible to achieve control of the RNG without hav-
ing to modify the virtual machine (VM) itself, meaning a
cloud tenant, even one that inspects checksums of critical
system components such as the kernel, should be unable
to detect any subversion without specifically searching
for artifacts of the used technique. Second, with control
over the RNG, cryptographic keys become predictable,
and so there is no need to exfiltrate encryption keys out
of the cloud infrastructure. Encrypted communications
can be monitored from outside the cloud infrastructure
with no suspicious key leakage shadowing each new en-
crypted message. Third, if an NSA can control the RNG
with high enough precision, it should be possible to cause
the output random numbers to still appear truly random,
and only predictable to the NSA, thus maintaining the
tenant’s security against all non-NSA actors.

In this project we make the following contributions:

1



• We have created a working attack prototype against
the Linux 4.4.6 kernel. We subvert any reads
from /dev/random and /dev/urandom and mod-
ify their outputs to a deterministically pseudoran-
dom byte stream. Our prototype does this without
modification to the VM using LibVMI[14], a Vir-
tual Machine Introspection (VMI) tool.

• We have implemented a similar, perhaps more im-
pactful, attack against the user space OpenSSL [18]
RNG, commonly used by modern software frame-
works such as the Apache2 [20] and NGINX [17]
web servers. With this attack an NSA can com-
pletely subvert the cryptographic key generation on
web servers of cloud tenants in a cloud service
provider.

• We provide insight into the defense space, includ-
ing modeling detection mechanisms and how they
might be used by cloud tenants to discourage NSAs
from subverting the RNGs of their VMs. We suc-
cessfully implemented a simple detection against
the kernel attack we describe in this paper, and fur-
ther explore how similar defense mechanisms might
be used to thwart more sophisticated attacks.

2 Related Works

Virtual machine introspection is a technology that has ex-
isted for several years, and that was born out of security-
based concerns. In 2003, Garfinkel and Rosenblum de-
veloped what is regarded as the first VMI system as a
mechanism for isolating an Intrusion Detection System
(IDS) from the operating system (OS) of the machine
it was protecting [11]. With the development of robust
tool sets to perform VMI [9, 14], it might be suspected
that VMI is currently being leveraged by public cloud
service providers to enhance security guarantees of their
systems, a hypothesis which has not yet been confirmed
or denied.

With the evolution of VMI and its use in virtual en-
vironments, Wang et al. have demonstrated it is possible
for guest VMs to detect when they are being introspected
on [2] and leverage this knowledge to perform malicious
activities between introspection intervals. This is rele-
vant to our own work, as detection of introspection is
one of the main defense mechanisms against the attacks
we present.

To the best of our knowledge, using the hypervisor to
poison a random number generator has only previously
been explored by Alt et al. [1]. In this work, the authors
modified the QEMU[19] emulator1 to intercept execu-
tion of specific RNG functions in a VM and poison the

1Which works in conjunction with the KVM and Xen hypervisors

result. However, this approach may be brittle since it re-
quires a rewrite of QEMU itself to adapt to different ker-
nels or new attack methods. In contrast, our work uses
a flexible introspection layer, and can upgrade and reat-
tach to a running VM. Alt et al.’s work also consisted of
exploring only the attack surface, leaving defense mech-
anisms and user space attacks to future work.

3 Methodology

3.1 Architecture

In order to explore how VMI might be leveraged to sub-
vert kernel space random number generation, we built a
system to simulate a virtual cloud environment. We con-
figured a server (Intel Core i5-650, 3GB RAM) to run
the Xen hypervisor [21], with Debian Testing 4.4.6 as
the Domain 0 (Dom0, the host) VM and Debian Testing
4.4.6 as the first Domain U (DomU, the Test VM) VM.
The architecture of the simulated virtual cloud environ-
ment is detailed in Figure 1.

Figure 1: Virtual cloud environment architecture used to
deploy RNG subversion attack

3.2 Using LibVMI

To introspect on the VM, we used the LibVMI library
[14], shown in Figure 2, over the GDB-based approach
or QEMU-modification performed by Alt et al. [1]. Lib-
VMI interfaces with the Xen hypervisor and provides
convenience functions for:

• accessing memory

• resolving kernel symbols to memory addresses

• receiving callbacks when particular events occur

2



Figure 2: LibVMI memory access model. Our code
would be the VMI Application in this diagram. (source:
libvmi.com [14])

LibVMI is very powerful, but is also under current de-
velopment by a small team, and we ran into several cases
where features we desired were not yet implemented.

In particular, LibVMI’s event monitoring framework
is attractive for this sort of attack because it enabled
us to register callback handlers and invoke them when
particular events occurred. LibVMI supports four types
of events: Memory, Register, Interrupt, and SingleStep.
Memory events trigger when a particular memory region
is read, written to, or executed. Register events trigger
when specific control registers are written to. Interrupt
events trigger when an interrupt occurs in the monitored
VM. SingleStep events trigger after the current instruc-
tion executes.

Originally, we intended to register a memory event for
when a particular kernel instruction was executed, then
pause execution and perform our RNG tampering. Un-
fortunately, LibVMI cannot currently handle such fine-
grained memory accesses2, and threw an error when we
attempted to register the event. In order to get the VM to
pause execution at the precise code location we wanted,
we devised an alternate strategy.

Instead, when our attack first starts, we pause the VM,
regardless of what instruction is currently being exe-
cuted. We find the memory location of our target instruc-
tion, and overwrite it with an Int3 instruction (0xcc),
saving the original byte to a local variable for later re-
covery. When executed, the Int3 instruction causes an
interrupt, and LibVMI’s Interrupt event framework can
register a handler for such interrupts. When we receive
a callback for the interrupt, we perform whatever intro-
spection necessary, replace the overwritten byte with its

2We believe this is a limitation of the current LibVMI/Xen interface
and may be supported in the future. LibVMI can only take advantage of
runtime information Xen provides, and finer-grained memory monitor-
ing without Xen support would incur orders-of-magnitude more over-
head.

original value, thereby restoring the original execution
of the kernel code, and register a single-step callback be-
fore allowing the VM to resume. Immediately after the
next instruction, the single-step callback triggers and we
again replace the target instruction’s first byte with an
Int3 instruction so that on the next iteration we will be
able to introspect again. This sequence of events is actu-
ally what happens when a debugger such as GDB sets a
breakpoint. In our code, we generalized this sequence of
actions into a breakpoint-creation function, and we hope
to ultimately contribute this functionality upstream to the
LibVMI project.

3.3 Attacks
3.3.1 Possible Approaches

As in Alt et al.’s work [1], we hypothesized three possi-
ble approaches for subverting the Linux RNG from the
hypervisor. The first approach was to simply wait for the
Linux RNG to generate random numbers, then immedi-
ately replace them with deterministic bytes before they
could be used by any user application (shown as A in
Figure 3). The second approach was to intercept and em-
ulate the rdrand x86 instruction, an instruction that asks
the CPU to return a random number generated from the
hardware RNG[15]. The third approach involved inter-
cepting all input into the Kernel’s entropy pool so that
its output would become deterministic and predictable
(shown as B in Figure 3). Also as in Alt et al.’s work, we
determined that the most straightforward solution would
be the first option.

Figure 3: Linux entropy pool management architecture
(source: Alt et al. [1])

After discovering that OpenSSL, the cryptographic li-
brary used by the popular web servers Apache2 and NG-
INX, maintains its own entropy pool and RNG in user
space, we extended our attack to target the OpenSSL

3



RNG. We have verified that our attack successfully sub-
verts the TLS DHE RSA WITH AES 128 CBC SHA Diffie-
Hellman key exchange private key on an Apache2 server
running on our virtualization platform. Using this attack
an NSA can predict the ephemeral shared session key
for each HTTPS connection between users on the Inter-
net and service providers using that cloud provider, and
thus be capable of real-time Man-in-the-Middle (MitM)
attacks against large portions of the Internet.

3.3.2 Kernel Space RNG

Our goal with this attack was to cause any read from the
/dev/random and /dev/urandom file objects to return
a predictable sequence of bytes. As our reference test
case, we used the dd utility to read a configurable num-
ber of bytes from these file objects from user space. This
is analogous to how other user space applications open
and read bytes from these files. Normally, these reads
return random bytes, but when our attack executes, any
following read will return our signal value, a stream of
‘0x66’ bytes (corresponding to the ‘f’ character). We
also wrote a variant of the attack that emits an attacker-
controlled pseudorandom sequence of bytes produced by
the unseeded C rand function, thereby reducing the ex-
pected complexity of the cryptanalysis necessary to pre-
dict any generated keys.3

Figure 4: Generating random bytes with and without the
hypervisor attack.

As shown in Figure 3 (A), this attack required finding
the point in the Kernel’s RNG at which random bytes
were generated but had not been used. We reverse-
engineered the Kernel’s RNG by reading through the
RNG source code, random.c. We found that the appro-
priate place to introspect was in the extract entropy user
function, just before and after calls to extract buf, which
retrieves increments of 10 random bytes from the ap-
propriate entropy pool and returns them in a temporary
buffer tmp.4 Examining the compiled code of random.o,
we discovered that the register holding the address to
tmp was clobbered after returning from extract buf, so
we created two breakpoints: one before and one after
the call to extract buf. Before the call, we retrieved the

3Future work is needed to evaluate mechanisms for the attacker
to use cryptography to increase resistance to fourth-party RNG pre-
dictability while maintaining third-party predictability.

4By hooking in this one location, we were able to modify the bytes
returned by both /dev/random and /dev/urandom.

memory address of tmp from the RSI register, and after-
wards, we overwrote 10 bytes at that address with our
signal value. It is important5 to note that only two lines
after the call to extract buf, tmp is copied into the virtual
memory of the user space process that invoked it and is
likely much more difficult to access.

3.3.3 User Space RNG

After we completed our attack against the Linux kernel’s
RNG, we were annoyed to discover that the first non-
trivial test we performed to assess the validity of our at-
tack didn’t work because the application didn’t use the
kernel RNG.6 Specifically, we configured the Test VM to
run an Apache2 web server with TLS enabled supporting
only the TLS DHE RSA WITH AES 128 CBC SHA7 cipher
enabled.8 Viewing the Server Key Exchange packet in
Wireshark yields the public values for p, g, and pubkey.
p and g are loaded when the webserver process starts and
are static for all connections, but the pubkey is generated
by taking g to the privkey power modulo p. Unfortu-
nately, pubkey was not being generated by taking g to
the power of our signal value, 256 bytes of 0x66, mod-
ulo p, and so we knew that the webserver was not directly
using values from /dev/random or /dev/urandom.

After investigating Apache2’s mod ssl module and
its corresponding use of the OpenSSL library, we
discovered that OpenSSL maintains its own RNG
and entropy pool, for which merely one input is
/dev/urandom. Therefore, we reverse-engineered the
mechanism by which OpenSSL generates its random
numbers. OpenSSL’s BIGNUM library contains a func-
tion BN rand, which calls bnrand,9 which extracts bytes
from the OpenSSL RNG and puts them in a buffer before
converting them to a BIGNUM object via the BN bin2bn
function. These BIGNUM objects are then used as param-
eters for cryptographic operations throughout OpenSSL
and Apache2. Exactly like in our kernel attack, we set a
breakpoint after the random bytes are generated, imme-
diately before the call to BN bin2bn, and overwrite the
random bytes with our signal value.

5For performance reasons. See Section 4.
6Other applications, such as Gnu Privacy Guard, do use the kernel

RNG directly.
7The TLS DHE RSA WITH AES 128 CBC SHA cipher is supported

by modern versions of both Chrome (49.0.2623.87) and Firefox
(45.0.1), and is representative of currently-used cipher suites. We chose
this specific cipher because, unlike elliptic curve versions of the Diffie-
Hellman key exchange, it is easy to visually inspect and verify the suc-
cess of our attack using Wireshark.

8Despite statically configuring a select cipher for our tests, we be-
lieve our attack works across all forward-secret cipher suites since they
all rely on random number generation.

9Only the symbol for BN rand is exported, and the assembly code
for BN rand makes an unconditional jump into bnrand, which is loaded
at a dynamic offset.

4



Figure 5: Kernel data structures that it is necessary to
walk in order to find appropriate memory offsets in run-
ning user space applications (source: Zhiquiang Lin [8])

However, unlike the kernel attack where we could
use LibVMI’s vmi translate ksym2v function to trans-
late kernel symbols to virtual memory addresses, user
space processes don’t maintain a global symbol table.
Instead, when a process loads its libraries into mem-
ory, the symbols are stored with the library. Each
time Apache2 is restarted, the linker will dynamically
map each of its libraries into virtual memory at new
base memory addresses. Offline, we can identify the
memory offsets of the target functions. For instance,
BN rand was located at an offset of 0xd5a50 into
libcrypto.so.1.0.2. To find the base memory ad-
dress for libcrypto.so.1.0.2, we needed to walk the
kernel’s process list, and for the target process, walk its
memory map list for the target library. This data structure
is shown in Figure 5.

3.4 Detection

Our detection scheme targets the attack vector where an
attacker traps and overwrites random bytes with deter-
ministic bytes before they are copied to user space. Our
implementation of this scheme detects attacks on the
Linux RNG, but the design of our scheme can be ex-
tended to work on a user space RNG or another OS, such
as Windows.

In our detection model we assume that an attacker will
have an existing attack and when a new VM is launched,
will need to make a decision to apply the existing attack,
or not. The attacker has limited time to make this deci-
sion and so cannot manually inspect the VM’s code. We
also assume the attacker will not have access to source
code of any custom modules the tenant has produced.
Instead, the attacker has to rely on automation to find the
appropriate attack offsets. Under this model, we believe

it is possible to create a module to detect or resist RNG
subversion.

We have built a simple prototype to attempt to detect
RNG subversion. In general, the RNG can create and
manage shadow copies of information that is critical to
the operation of the RNG, and validate that the resulting
random bytes are valid given the shadow data. Our pro-
totype creates a circular buffer which stores a copy of all
outputs from the RNG immediately after they are gener-
ated, and hopefully before they are overwritten by the at-
tacker. In an extension of this scheme, we describe mod-
ifications which involve creating shadow data-structures
for all of the RNG’s internal state.

3.4.1 Kernel Detection

In order to detect tampering of the kernel’s RNG after
bytes have left the blocking or non-blocking entropy, we
customize random.c to maintain a circular buffer of the
most recent 4,000 bytes that have been read from either
of its blocking or non-blocking entropy pools10. On each
call to extract buf, we lock and calculate the return bytes
twice. The first calculation is put into the same buffer as
the unmodified RNG, tmp; the second is placed into our
circular buffer. Note that performing this computation
within extract buf means that the circular buffer will
contain bytes read from all readers in the system of both
the blocking and non-blocking entropy pools. When our
circular buffer reaches its max size, we dump the con-
tents to the console using printk.

The actual detection is done by a user space program
which does the following: It periodically reads blocks
of ten bytes from /dev/urandom and stores their value in
memory until the next buffer dump. Then, the process
makes sure that the block is located in the buffer dump.11

If the block is not found, we infer that the RNG has been
subverted and raise an alert to the user.

If the user space application was subverted and is stor-
ing a changed block, there is a very minor chance that
the block could have been naturally randomly generated.
Our circular buffer stores 4000 bytes, or 400 blocks.
Each block has 280 possibilities. Thus, there is approxi-
mately a 400/280 chance that the changed block occurs
naturally in the buffer and a false negative would oc-
cur. We consider this small enough to ignore. On the
other hand, we expect false positives to never occur at
all. If the block was randomly generated and was not
subverted, it should always be in the shadow buffer.12

10We chose 4,000 arbitrarily. The only requirement in our imple-
mentation is that the size be divisible by ten, because the kernel pulls
ten bytes out of the entropy pool at a time

11A more efficient implementation would provide an ioctl to check
the circular buffer.

12Discounting possibilities for cosmic rays causing bit flips.

5



3.4.2 Extension of Detection Scheme

Our detection implementation will only work on attacks
which tamper with the RNG output by hooking outside
of the extract buf function. Conceptually, we can ex-
tend the detection scheme to detect any tampering that
occurs inside the RNG by augmenting the RNG to man-
age shadow instances of each of all of it’s data-structures
rather than just tracking outputs. For each operation
that occurs on a data-structure in the RNG, the RNG
completes the same operation the corresponding shadow
data-structure. If at any point the shadow data-structures
and the original data-structures diverge, the RNG would
detect that an outside actor has tampered with the RNG.
This detection scheme requires duplicating nearly all
computation throughout the RNG, which will ultimately
will result in at least 100% overhead to the RNG.

Unfortunately, as in any cat and mouse game, if the
attacker is prepared for such a detection method, she can
overwrite the shadow data structures as well. We discuss
alternate detection approaches in Section 4.

4 Evaluation

Conceptually, it is well understood that the hypervisor,
as an interface between the VM and hardware, has com-
plete control over any computation the VM may perform.
Therefore, it is no surprise that we can subvert the VM’s
RNG operation, both in kernel and user memory. How-
ever, since our threat model is predicated on the attack’s
usefulness extending only so far in as it remains stealthy,
our evaluation of its success depends on the artifacts it
produces and how visible they may be to the tenant op-
erating the VM.

The first, and perhaps most noticeable of these arti-
facts is purely performance-based. Introspection takes
time. Wang et al. [2] detect VMI through the timing de-
lay between when the VM is paused so introspection can
occur and when the VM is resumed. In their paper, they
found that a timing threshold of 5ms was sufficient to de-
tect introspection on their system. From this, we suspect
that any delay of a similar order of magnitude would be
consistently detectable.

In our kernel attack, we timed the generation of differ-
ent size blocks of random bytes using the command

time dd if=/dev/urandom count=1 bs=N

where N is the number of bytes. The results are shown
in Figure 6.

From these results, we can see a clear linear increase
in overhead corresponding to the number of bytes read.
Our attack incurs approximately 3ms of overhead per
100 random bytes. Breaking this down, 100 bytes corre-
sponds to overwriting ten 10-byte buffers, each of which

Figure 6: Overhead of kernel attack

requires 2 breakpoints, each of which requires 2 traps to
the hypervisor13. If we assume that overwriting 10 bytes
of memory takes negligible time in comparison with han-
dling an interrupt, we can see that 40 traps to the hyper-
visor incurs approximately 3ms of overhead. Thus, we
believe our current kernel attack is clearly detectable by
monitoring the RNG delay.

However, we believe we could significantly reduce
this overhead with a more advanced attack. Instead of
overwriting each 10-byte buffer of random bytes, if we
can successfully trace the copy from kernel memory to
user memory, we should be able to overwrite the entire
N-byte buffer in a single write operation. However, to do
so while maintaining state for an arbitrary number of si-
multaneous reads may require additional breakpoints for
monitoring which processes request random bytes. We
identify this as an avenue for improvement that merits
more research.

The second artifact we have identified is that both our
kernel and user space attacks are relatively brittle. Both
are capable of finding the necessary instructions to intro-
spect on in a dynamic manner across reboots, but both
also rely on fixed offsets from reference addresses to set
the proper breakpoints. This means that, using this tech-
nique, a given attack must be manually tailored to each
particular kernel or application version to work properly.
Since the attacker has control of the hypervisor, they can
simply inspect the kernel version before launching the at-
tack, and launch one of many stockpiled attacks against
a known version. If an incompatible or unknown ker-
nel is detected, the attacker can always do nothing and
simply fail to make the RNG deterministic. We show
this decision tree in Figure 7. However, this opens up
the possibility of again, detecting a difference in perfor-
mance between a stock kernel (or application), which is

13One to break and introspect, the other to reset the breakpoint.

6



introspected upon, and a custom kernel (or application),
which is not. We identify this as another area in need
of more research, both detecting the absence of intro-
spection on a custom kernel, as well as creating more
advanced methods of automatically finding appropriate
breakpoints in a customized kernel, and what the limits
of such an approach may be.

Figure 7: Overhead of RNG Detection

Unlike our attack, in which performance characteris-
tics are critical to its efficacy, the performance of our pro-
totype detection method is immaterial. A kernel specif-
ically instrumented to detect RNG subversion needs not
be used in production. Instead, we can use such a de-
tection scheme as a canary to detect if a cloud service
provider has been compromised.

In general, an attacker can not detect the semantic be-
havior of an arbitrary binary. It should be possible to
force an attacker to refrain from hooking an RNG and
ultimate leak timing information. This allows us to sub-
stantially reduce the overhead of our detection scheme,
as we will not have to add computation to the RNG but
instead merely obfuscate the semantic behavior.

5 Future Work

5.1 Undetectable Predictable Randomness
One obvious detection scheme for an attack on an RNG
is to detect a lack of entropy coming from the RNG rather
than instrumenting the kernel to detect tampering itself.
For example, if our attack generates a stream of 0x66
bytes, it is trivial to detect. If the output is from the
C rand function, it becomes more difficult to detect by
eyeball, but can likely still be statistically detected. An
advanced attack could potentially use public-key cryp-
tography to generate a random-looking stream of bytes
that could only be predicted with possession of the cor-
responding private key. However, such an attack, reliant
on public key cryptography to generate new bytes, would
likely incur additional overhead that may be detectable.
We identify this as an area needing further investigation
into the tradeoff space of security vs. efficiency while
maintaining predictability.

5.2 Limits of VMI Overhead
In our prototype attack, we ran into an unfortunate situ-
ation in which our attack introduces significant overhead
into the generation of random numbers. We believe that
in its current state, this overhead is easily detectable us-
ing techniques similar to those used by Wang et al. How-
ever, it seems likely that this overhead could be signifi-
cantly reduced by overwriting the entire N-byte buffer
of random bytes instead of tmp, the 10-byte temporary
buffer.

The first complication to this is that, before tmp is
copied into the larger buffer, it is copied into the virtual
memory of a user space process. As shown in Section
3.3.3, accessing the memory of user space processes is
complex, but not necessarily problematic. A much big-
ger potential issue is that processes spawn and terminate
over time, and any process could request random bytes at
any time. Thus, unlike our attack against the OpenSSL
library that specifically targeted running Apache2 pro-
cesses, to find the user space virtual memory address of
the eventual buffer may require an expensive lookup op-
eration across the kernel process list. This may introduce
even more overhead than our original naive attack, or it
may be possible to cache common memory locations and
optimize lookups over multiple invocations to create an
attack with much less overhead. More work is necessary
to explore the possible minimal overhead of such an at-
tack.

5.3 Real-world Study
Finally, this entire work is predicated on the suspicion
that an NSA may be using VMI to perform a specific
category of attack. In our literature review, we were able
to find many papers[7, 10, 4] on VMI, but no evidence
that any public cloud service provider introspects on their
tenant’s VMs in any way. We were also unable to find
any cloud provider that offers introspection as a service,
which we thought may be a valid business model since
VMI is often used for intrusion detection. We therefore
identify a need for a more comprehensive survey and
measurement study that answers the question of, ”Who
is using VMI, and why?”

6 Conclusion

In this project we investigate how an NSA can leverage
its resources and abilities to gain widespread access to
modern communication and web services while avoiding
public criticism through security and stealth. We focus
on the scenario in which an NSA has superuser privi-
leges on a subset of the host machines of a cloud service
provider. Specifically, we investigate how an NSA can

7



subvert a virtual machine’s Random Number Generator
to produce deterministic outputs and present two proto-
type attacks that demonstrate its feasibility.

Our first attack subverts read operations from
/dev/random and /dev/urandom and allows an at-
tacker to produce a deterministic psudeorandom byte
stream. Our extension of this attack works against user
space RNGs, specifically the OpenSSl RNG which is
used by modern web servers such as Apache2 and NG-
INX. These attacks create artifacts that likely enable de-
tection by a cloud tenant. We present an initial detection
scheme and discussion of the issues for detecting this cat-
egory of attacks performed by an advanced adversary.

This paper is hopefully the first of many that explore
NSA-level attacks using the hypervisor. Our work in this
paper investigates a particular kind of attack against an
RNG wherein the random bytes are simply overwritten
before they can be used. However, there are many other
avenues for similar attacks, and future work is needed to
determine the feasibility of these other attacks, as well as
their real-world feasibility.

References

[1] Matthew Alt et al. Entropy Poisoning from the Hy-
pervisor. Unpublished class project. 2015. URL:
https://courses.csail.mit.edu/6.857/

2016/files/alt-barto-fasano-king.pdf.

[2] Gary Wang et al. “Hypervisor Introspection: A
Technique for Evading Passive Virtual Machine
Monitoring”. In: 9th USENIX Workshop on Offen-
sive Technologies (WOOT 15). Washington, D.C.:
USENIX Association, Aug. 2015. URL: https:
//www.usenix.org/conference/woot15/

workshop-program/presentation/wang.

[3] April Glaser. After NSA Backdoors, Security Ex-
perts Leave RSA for a Conference They Can Trust.
Jan. 30, 2014. URL: https : / / www . eff .

org / deeplinks / 2014 / 01 / after - nsa -

backdoors-security-experts-leave-rsa-

conference-they-can-trust.

[4] Adrian L. Shaw et al. “Forensic virtual machines:
dynamic defence in the cloud via introspection”.
In: IEEE International Conference on Cloud En-
gineering (IC2E). 2014. URL: http://sacko.
uk/pdf/2014.1.pdf.

[5] Olga Khazan. The Creepy, Long-Standing Prac-
tice of Undersea Cable Tapping. July 13, 2013.
URL: http : / / www . theatlantic . com /

international / archive / 2013 / 07 / the -

creepy - long - standing - practice - of -

undersea-cable-tapping/277855/.

[6] Mandient. APT1. Exposing One of China’s Cy-
ber Espionage Units. Feb. 19, 2013. URL: http:
//intelreport.mandiant.com/Mandiant_

APT1_Report.pdf.

[7] Chris Benninger et al. “Maitland: Lighter-weight
VM introspection to support cyber-security in the
cloud.” In: IEEE 5th International Conference on
Cloud Computing (CLOUD). 2012. URL: http:
//christophermatthews.ca/files/bare_

conf.pdf.

[8] Zhiqiang Lin. CS 6V81-05: System Security and
Malicious Code Analysis, Understanding the Im-
plementation of Virtual Memory. Feb. 29, 2012.
URL: https : / / www . utdallas . edu /

~zxl111930 / spring2012 / public / lec11 -

handout.pdf.

[9] Bryan D Payne. “Simplifying virtual machine
introspection using libvmi”. In: Sandia report
(2012).

[10] A.S. Ibrahim et al. “CloudSec: a security moni-
toring appliance for Virtual Machines in the IaaS
cloud model”. In: 5th International Conference on
Network and System Security (NSS). 2011. URL:
http://researchbank.swinburne.edu.au/

vital/access/services/Download/swin:

23719/SOURCE2.

[11] Tal Garfinkel, Mendel Rosenblum, et al. “A Vir-
tual Machine Introspection Based Architecture
for Intrusion Detection.” In: NDSS. Vol. 3. 2003,
pp. 191–206.

[12] Amazon Web Services. URL: https : / / aws .

amazon.com/.

[13] Google Cloud Compute. URL: https://cloud.
google.com/.

[14] LibVMI: Virtual Machine Introspection. URL:
http://libvmi.com/.

[15] John M. Intel R© Digital Random Number Gen-
erator (DRNG) Software Implementation Guide.
URL: https://software.intel.com/en-
us / articles / intel - digital - random -

number - generator - drng - software -

implementation-guide.

[16] Microsoft Azure. URL: https : / / azure .

microsoft.com/en-us/.

[17] NGINX. URL: https://www.nginx.com/.

[18] OpenSSL Project. URL: http://www.openssl.
org/.

[19] QEMU: Open Source Processor Emulator. URL:
http://wiki.qemu.org/Main_Page.

8



[20] The Apache HTTP Server Project. URL: https:
//httpd.apache.org/.

[21] The Xen Project. URL: http : / / www .

xenproject.org/.

9


