
Cloaking Order in Chaos
Invisibly subverting the Linux random number generator via the hypervisor

Checkpoint

Jeremy Erickson (jericks) Andrew Quinn (arquinn) Timothy Trippel (trippel)
EECS 588, Winter 2016

University of Michigan, Ann Arbor

1 Project Overview

Our project is predicated on the assumption that a
Nation-State Actor (NSA) may decide to focus on sub-
verting the Random Number Generator (RNG) of virtual
machines through control of the hypervisor.

2 Progress

We have conceptualized several approaches by which the
NSA could approach this task. The first is to simply in-
sert breakpoints in the kernel at the memory locations
where random numbers are returned to the user, and re-
turn pseudo-random NSA-controlled random numbers in
their place. The second approach is to introspect on
any memory read from the entropy pool, and overwrite
the entropy pool with a pseudo-random NSA-controlled
value immediately before the read, thus making the re-
sulting random bytes predictable to the NSA. The third
approach is to control the sources of entropy to the en-
tropy pool itself. There may be other approaches to
this goal that we have not considered, such as making
significant modifications to the running kernel in mem-
ory to deterministically generate pseudo-random num-
bers without the need for breakpoints, but we believe
these other approaches to be unlikely.

Of these three approaches, we chose to implement the
first, as it is the most straightforward and gives the at-
tacker the most control over the output of the random
number generator.

2.1 Attack Prototype

Our attack prototype subverts the Linux random num-
ber generator of a virtual machine running on top of
the Xen hypervisor. Our approach to do so has been
based on the first approach above, described by Alt et
al. [2], and is detailed in Figure 1. To do so, we

have utilized LibVMI [1], a virtual machine introspec-
tion tool, to implement a software hook (or software
breakpoint event) on any accesses to /dev/random and
/dev/urandom. This software hook replaces all bytes
requested from either /dev/random or /dev/urandom
interfaces with attacker determined bytes, by overwriting
the user space buffer passed to the extract entropy user
function. Because the interfaces to /dev/random

and /dev/urandom both invoke a call to the ex-
tract entropy user function, a single software hook suc-
cessfully subverts both interfaces, shown in Figure 1 as
“LibVMI Hook Location 1” and “LibVMI Hook Loca-
tion 2”. Upon reverse engineering how the Linux entropy
pool management system works, we discovered that it is
possible to intercept calls to the input entropy pool as
well. This may be useful for a slightly modified attack
where the attacker controls the inputs to the blocking and
nonblocking entropy pools themselves rather than the out
of the entire random number generator interfaces. This
is denoted “LibVMI Hook Location 3” in Figure 1.

2.2 Detection

Our approach creates hypervisor breakpoints on specific
offsets within the extract entropy user function in the
Linux kernel’s RNG. This approach works as long as the
offsets that the attack is using correspond to the partic-
ular version of the Linux kernel that the victim is using.
However, making simple changes to the Linux kernel’s
random.c file will change these offsets and cause any
existing attack to fail. We consider it unlikely that the
NSA’s attack would be sophisticated enough to dynam-
ically profile the kernel’s RNG and detect the changed
offsets with a high enough confidence factor to proceed
with the attack automatically.

The attacker has two options: First, the attacker could
decide to take a hash of each kernel before she tries to at-
tack the kernel. If the hash differs from a known version
the attacker can simply choose not to continue with the

1



Figure 1: Diagram of the Linux entropy pool manage-
ment architecture (diagram courtesy of Alt et al. [2])

attack. In this case, a very simple detection scheme lever-
ages the difference in timing between a compromised hy-
pervisor and a non-compromised hypervisor. A victim
simply starts multiple machines, a few with a stock ver-
sion of the Linux kernel and a few with small changes to
random.c (i.e. a couple of monitoring calls to printk).
The victim then determines the amount of time it takes
to read a large number of bytes from /dev/urandom in
each of the kernels. By repeating this process the victim
will be able to tell if there is a statistical difference be-
tween the amount of time it takes to read random bytes in
the stock kernel compared to the amount of time it takes
to read in the modified kernel. This detection scheme is
not unique to this particular attack; it is likely that we
could detect any of the attack vectors we have presented
using this scheme.

An especially sophisticated NSA may choose to dy-
namically determine which offsets to hook when pre-
sented with a new kernel. The NSA could do so by disas-
sembling the kernel binary and analyzing the object files.
As long as the custom kernel has the same basic layout
in the random.c file, it is likely that the process could
even be automated with some confidence factor. To de-
tect the attack in this case, a victim simply has to find a
way to leak the values that come from the entropy pool
before the attacker can change them. A simple scheme
leaks these bytes using printk and periodically com-
pares them against the bytes returned from the RNG. By
unpredictably changing the operation of the Linux RNG,
any previously-deployed attack will be forced to either
operate on an unknown kernel, thus likely crashing it, or
refuse to operate, thus allowing a timing attack to reveal
its existence.

3 Schedule

We are currently on schedule. We have completed our
initial attack prototype, and can overwrite the return
value from the Linux RNG with arbitrary bytes. Between
now and April 21, we plan to:

1. Update our attack prototype to return pseudo-
random bytes that are predictable to the attacker but
otherwise appear completely random.

2. Implement a modified Linux kernel that can detect
our prototype attack by comparing the entropy pool
state against the output random bytes.

4 Obstacles and Workarounds

Our first attempt focused on the KVM hypervisor. Unfor-
tunately, LibVMI does not support events (e.g. catching
interrupts or memory accesses) when run on the KVM
hypervisor and we need event support to efficiently man-
age breakpoints in the VM. Therefore we changed course
to attack the Xen hypervisor. Due to a hardware issue,
we wasted several weeks at the beginning of the semester
trying to get the Xen hypervisor to detect Dom0’s hard
drive.

We are not currently blocked by any other obstacles
that we are aware of.

5 Preliminary Results

We have done a brief initial investigation into the fea-
sibility of detecting a timing difference between benign
and malicious hypervisors. So far, the results look very
promising. Over 10 iterations of copying a single 512-
byte block from /dev/urandom, a benign hypervisor
allows the operation to complete in a mean of 3.6 mil-
liseconds with a standard deviation of 0.49 milliseconds.
Our prototype attack incurs a comparatively huge per-
formance penalty, with a mean of 19.1 milliseconds and
a standard deviation of 1.29 milliseconds. This perfor-
mance impact initially appears to be linear with the size
of the random bytes generated.

References

[1] LibVMI: Virtual Machine Introspection. Apr. 1,
2016. URL: http://libvmi.com/.

[2] Matthew Alt et al. Entropy Poisoning from the Hy-
pervisor. Unpublished class project. 2015. URL:
https://courses.csail.mit.edu/6.857/

2016/files/alt-barto-fasano-king.pdf.

2


