
(AIN’T NUTHIN’ BUT A) PC THANG:
Detecting and Mitigating Cache-based Microarchitectural Attacks Using

Protean Code
(Working Title!),

Jeremy Erickson Sai Gouravajhala Akshitha Sriraman
EECS 583, Fall 2015

University of Michigan, Ann Arbor

1 Introduction

Security fixes often come at the expense of performance.
For instance, intentionally introducing spurious opera-
tions is a common defense against side-channel attacks.
Such operations may include introducing noise or forc-
ing running time uniformity across algorithmic opera-
tions. However, this is fundamentally at odds with the
goal of running efficient and fast programs. In an ideal
world, we want code to run quickly, but also be resistant
to attacks.

In this paper, we propose PC THANG, a general-
purpose framework for implementing on-demand se-
curity measures when side-channel attacks are de-
tected. We hypothesize that we can take advantage
of efficient, yet insecure, code when no attack is de-
tected, but trade efficiency for security when an at-
tack occurs. We build this functionality on top of Pro-
tean Code [5], a unique dynamic compilation frame-
work with minimal performance overhead itself.

To illustrate the system’s potential, we present an on-
demand defense against the FLUSH+RELOAD [6] cache
side channel attack on GnuPG [2]. We aim to show that
the PC THANG system not only detects the side-channel
microarchitecture attack on the cache, but also mitigates
the attack. Furthermore, we aim to show the performance
penalty of utilizing this system and compare it with the
penalty of using the defense static fix.

2 Background

In this section, we provide background information re-
garding Protean Code and the FLUSH+RELOAD attack.

2.1 Protean Code
Dynamic compilation enables our platform to adapt to
threats that may or may not be present at runtime. In con-
trast to other dynamic compilers such as DynamoRIO [1]

or PIN[7], Protean Code does not interpret the original
application and so has negligible (< 1%) performance
overhead.

2.2 FLUSH+RELOAD

In the FLUSH+RELOAD attack, a spy process that is co-
located with a victim process on the same CPU, but not
necessarily the same core, attempts to infer the instruc-
tions the victim process is running. It does this by repeat-
edly loading a memory value shared with the victim pro-
cess, timing the load, and flushing it from the cache with
the clflush instruction. If the load returns slowly, it
was likely loaded from main memory. If the load returns
quickly, it was likely loaded from the shared last-level
cache (LLC), indicating that the victim process recently
loaded the instruction. In practice, these cases are clearly
distinguishable.

This technique relies on two requirements: a) that the
cache architecture is an inclusive cache1, and b) that the
spy process can manage its virtual memory such that it
can share access to a physical page with the victim pro-
cess. In practice, the latter requirement can be achieved
on modern Intel processors by using mmap to load the
victim executable into the spy process’ address space.

GnuPG uses the square-and-multiply exponentia-
tion algorithm for its RSA implementation. Ver-
sions of GnuPG prior to 1.4.14 were vulnerable to
FLUSH+RELOAD: for a given bit of the secret expo-
nent, either a square-reduce-multiply-reduce operation
would occur (if the bit were a 1), or a square-reduce op-
eration would take place (if the bit were a 0). By in-
ferring whether the multiply-reduce operations occurred
between consecutive square-reduce operations, the spy
process would be able to determine whether the next bit
of the secret key were a 0 or 1. In version 1.4.14 of
GnuPG, the maintainer fixed this issue by performing the

1That is, when the victim loads the instruction of interest, it will be
present in all cache levels, and most importantly, the shared cache.

1



multiply-reduce operation in both cases, simply throw-
ing away the result in the event of a 0-bit. However, the
maintainer noted that this would incure a “performance
penalty.”

3 Methodology

Our general-purpose framework consists of two parts:
SNOOPDETECT, which detects ongoing side channel at-
tacks, and DREPROTECT, which implements the real-
time mitigation measures.

3.1 Using SNOOPDETECT

Because the underlying source of Cache-Based Microar-
chitectural Attacks (CBMA) is the spy’s need to repeat-
edly flush from and reload the shared value into the cache
from memory, gaining visibility into runtime cache miss
events is a direct mechanism for detecting such attacks.
Recent Intel microprocessors offer the ability to log de-
tailed information about certain architectural events via
the Precise Event-Based Sampling (PEBS) performance
counter mechanism [3]. When an instruction i triggers
an event of interest, the PEBS mechanism generates a
PEBS record, which the hardware then logs to an in-
memory buffer. Each PEBS record contains i’s Program
Counter (PC), the memory address accessed by i, and
the values of the general-purpose registers as of i’s com-
mit. When the buffer is full, an interrupt notifies the OS’
PEBS driver to process the records and provide a new
buffer for the hardware to use.

Modern Intel processors support several PEBS events.
Of particular interest to us is the ability to track LLC
load miss events, which arise when a data/instruction has
to be fetched from the DRAM. In this work, we use the
MEM_LOAD_UOPS_RETIRED_L3_MISS PEBS event.

The SNOOPDETECT system relies on existing hard-
ware and operating system support for the advanced
PEBS performance counters available in Intel proces-
sors. The detection mechanism uses the Linux perf
API [4] to configure the hardware to record LLC miss
events. perf support is a standard part of recent versions
of Linux, and allows LLC miss events to be recorded en-
tirely from userspace. Root permissions are not required
for a process to monitor its own LLC miss events.

LLC miss records received from the hardware enter
the SNOOPDETECT processing pipeline where SNOOP-
DETECT maps the misses to source code locations and
invokes DREPROTECT to provide real-time protection as
the victim process continues to run.

3.2 Invoking DREPROTECT

SNOOPDETECT periodically checks the LLC miss rate,
triggering DREPROTECT if the rate of LLC miss events
on the key PCs exceeds a given threshold. This threshold
is directly determined by the rate at which a spy process
will have to perform the flush operation in order to launch
a successful attack.

DREPROTECT then uses dynamic compilation tech-
niques to thwart the spy’s attack, while the victim con-
tinues to execute. This is where the tradeoff between ef-
ficiency and protection takes place.

3.3 Defense Mechanism
SNOOPDETECT’s ability to quickly and precisely de-
tect LLC misses at runtime allows a real-time defense
mechanism with minimal application interference. For
instance, the FLUSH+RELOAD paper focuses on perfor-
mance inefficient mechanisms that are always in place to
thwart side-channel attacks if and when they occur.

DREPROTECT, however, is capable of achieving a rea-
sonable trade-off between security and performance, by
making cryptographic operations secure (thereby, com-
promising performance), only when SNOOPDETECT re-
ports the existence of a spy.

When DREPROTECT is invoked, it uses the Protean
Code infrastructure to dynamically modify the executed
code in order to thwart the CBMA side-channel attack.
The secure version of the binary dynamically introduced
by Protean code contains instructions that establish uni-
formity or randomness in terms of access time or space
utilization.

In order to thwart the FLUSH+RELOAD attack, we
adopt the proposed solution of using Protean code to dy-
namically inject a Multiply Reduce operation along with
every Square Reduce operation, thereby creating unifor-
mity across accesses to both 1’s and 0’s. However, we
will mitigate the corresponding performance overhead
by only applying it when necessary.

4 Evaluation

4.1 Accuracy
Fundamentally, if the supplied secure code mitigates the
vulnerability, our approach should be able to apply the
same defense mechanism and mitigate it an equivalent
amount. However, there is the possibility that, either
through poor detection, or a coding error, our approach
will be less effective than the original mitigation. This is
unacceptable.

To demonstrate that our approach provides no loss
of security, we will develop and test it against a work-

2



ing implementation of the FLUSH+RELOAD attack and
show that the spy process is unable to infer which cryp-
tographic operations the victim is executing, thereby in-
validating the attack.

Since the mitigation is not guaranteed to be in effect
at any given time, it is important to demonstrate that
SNOOPDETECT is able to detect the presence of an at-
tack and DREPROTECT is able to implement the miti-
gation quickly and under a variety of different operating
conditions. Thus, we will evaluate our solution under a
range of different loads, from completely idle to 100%
CPU load and perform the requisite analysis (e.g., speci-
ficity and sensitivity).

4.2 Performance Overhead
As our solution ultimately provides no benefit to secu-
rity over a static approach, it is important that it main-
tains the same security benefits while negating a substan-
tial part of the performance overhead for implementing
them. The efficiency of our approach is ultimately lower-
bounded by the runtime performance of the fast, insecure
version of the program, and must by upper-bounded by
the runtime performance of the slow, secure version.

In the common case, we intend for the fast, insecure
code to be viable, so we plan to demonstrate that when no
attack is detected, the protean binary runs with minimal
overhead, strictly less than the upper-bound of the slow,
secure static binary.

References

[1] DynamoRIO: Dynamic Instrumentation Tool Plat-
form. URL: dynamorio.org.

[2] GnuPG. URL: https://www.gnupg.org/.

[3] Intel(R). Intel(R) 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Combined Volumes: 1,
2A, 2B, 2C, 3A, 3B and 3C. June 2015. URL: http:
/ / www . intel . com / content / dam / www /
public/us/en/documents/manuals/64-ia-
32 - architectures - software - developer -
manual-325462.pdf.

[4] Linux Programmer’s Manual. perf_event_open(2)
Linux Programmer’s Manual. July 2015.

[5] Michael A Laurenzano et al. “Protean Code:
Achieving Near-Free Online Code Transformations
for Warehouse Scale Computers”. In: Proceedings
of the 47th Annual IEEE/ACM International Sym-
posium on Microarchitecture. Dec. 2014, pp. 558–
570. URL: http://dl.acm.org/citation.
cfm?id=2742212.

[6] Yuval Yarom and Katrina Falkner.
“FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack”. In: 23rd
USENIX Security Symposium (USENIX Secu-
rity 14). San Diego, CA: USENIX Association,
Aug. 2014, pp. 719–732. ISBN: 978-1-931971-
15-7. URL: https : / / www . usenix . org /
conference/usenixsecurity14/technical-
sessions/presentation/yarom.

[7] Chi-Keung Luk et al. “Pin: Building Customized
Program Analysis Tools with Dynamic Instru-
mentation”. In: Proceedings of the 2005 ACM
SIGPLAN conference on Programming language
design and implementation. 2005. URL: http :
/ / web . stanford . edu / class / cs343 /
resources/pin.pdf.

3


