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Abstract—Achieving a reasonable trade-off between security
and application performance is a challenging problem, owing to
the fact that the two ideas are often inherently at odds with each
other. Understanding the threat model for cache-based microar-
chitectural attacks requires a global knowledge of the memory ac-
cess behavior of both the application and its co-runners. Previous
schemes have focused primarily on security, and either impose
significant performance penalties or require non-trivial alterations
to the memory hierarchy or the run-time system environment.

In this paper, we present the Protean General Purpose
Guard (PGPG) system, which leverages dynamic compilation
techniques and hardware performance counters with the aim
of overcoming the security-performance gap. When PGPG is
tested against the FLUSH+RELOAD attack, we achieve conser-
vative average performance gains of 19.7%, with a worst-case
performance overhead of 0.03%, while maintaining application
security.

1 INTRODUCTION

Security fixes often come at the expense of perfor-
mance. For instance, intentionally introducing spu-
rious operations is a common defense against side-
channel attacks. Such operations may include in-
troducing noise or forcing running time uniformity
across algorithmic operations. However, this is fun-
damentally at odds with the goal of running efficient
and fast programs. In an ideal world, we want code to
run quickly, yet also be resistant to attacks.

In this paper, we propose PGPG (Protean General
Purpose Guard), a general-purpose framework for im-
plementing on-demand security measures when side-
channel attacks are detected. We take advantage of
efficient, yet insecure, code when no attack is detected,
but trade efficiency for security when an attack occurs.
We build our detection and defense functionality on
top of Protean Code [3], a unique dynamic compilation

framework with minimal performance overhead itself.
As our case study, we develop a microbenchmark
that mimics GnuPG [9], a well-known cryptographic
software suite.

To illustrate our system’s potential, we present an
on-demand defense against the FLUSH+RELOAD [4]
cache side channel attack on an RSA algorithm
microbenchmark. We show that the PGPG system
not only detects the side-channel microarchitecture
attack on the cache, but also mitigates the attack.
Furthermore, we show the performance penalty of
utilizing this system and compare it with the penalty
of using the static defense. Our method results in
an average speedup of 24.78% over the statically-
defended version of our RSA microbenchmark when
an attack is not present, and only a 0.32% slowdown
when an attack is occurring.

Our main contributions are as follows:

o To the best of our knowledge, we are the first to
develop a system that leverages dynamic compi-
lation to combine the advantages of fast, but inse-
cure, code, while maintaining equivalent security
properties of slow, yet secure, code (Section 3).

o We extend the use of Protean code beyond code
optimization and show how it can be used to
make modifications to program semantics, such
as including a dynamic defense (Section 3.3).

e We develop and evaluate an implementation
encompassing a hardware event-based detector
and a Protean-based dynamic defense component
(Section 4).

o We reimplement the FLUSH+RELOAD attack (spy
process) to test the attack detection (Section 2.2)
and to ensure that the Defender successfully
thwarts an attacker process.



2 BACKGROUND

We provide an overview of the Protean dynamic com-
pilation system, as well as the FLUSH+RELOAD attack
and GnuPG.

2.1 Protean Code

Dynamic compilation enables our platform to adapt
to threats that may or may not be present at run-
time. In contrast to other dynamic compilers such as
DynamoRIO [8] or PIN [5], Protean Code does not
interpret the original application and so has negligible
(< 1%) performance overhead [3].

Protean code works by recompiling target
functions at runtime to introduce performance
optimizations—in this case, security measures—when
needed. This just-in-time recompilation occurs in a
separate process and can be farmed out to an unused
hardware core, introducing negligible overhead in the
original program’s execution time. When the recom-
piled function is ready, all references to the original
function (conveniently modified by Protean code to
use a function look-up table) can be changed to refer to
the new function. Thus, all invocations of the original
function will invoke the new recompiled function.

2.2 FLUSH+RELOAD

In the FLUSH+RELOAD attack, a spy process that is
co-located with a victim process on the same CPU,
but not necessarily the same core, attempts to infer
the instructions being run by the victim process. It
does this by repeatedly loading an instruction stored
in memory that is shared with the victim process,
timing the load, and flushing it from the cache with the
clflush instruction. If the load returns slowly, it was
likely loaded from main memory. If the load returns
quickly, it was likely loaded from the shared last-
level cache (LLC), indicating that the victim process
recently loaded the instruction. In practice, these cases
are clearly distinguishable.

This technique relies on two requirements: a) that
the cache architecture is an inclusive cache!, and
b) that the spy process can manage its virtual memory
such that it can share access to a physical page with the
victim process. In practice, the latter requirement can
be achieved on modern Intel processors by using mmap
to load the victim executable into the spy process’s
address space.

2.3 GnuPG

GnuPG uses the square-and-multiply exponentia-
tion algorithm for its RSA implementation. Ver-
sions of GnuPG prior to 1.4.14 were vulnerable to

1. That is, when the victim loads the instruction of interest,
it will be present in all cache levels, and most importantly, the
shared last-level cache.
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Fig. 1. Vulnerable RSA Square-Reduce-Multiply-Reduce Expo-
nentiation Algorithm.

for(int i = 0; i < 32; i++)

{
1sb = exp & 1;
exp = exp >> 1,
val = square(val);
val = reduce(val);
val2 = mul(val);
val2 = reduce(val2);
if (1sb == 1)

val = val2;
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Fig. 2. Safe RSA Square-Reduce-Multiply-Reduce Exponentia-
tion Algorithm.

FLUSH+RELOAD: for a given bit of the secret expo-
nent, either a square-reduce-multiply-reduce opera-
tion would occur (if the bit were a 1), or a square-
reduce operation would take place (if the bit were a 0).
By inferring whether the multiply-reduce operations
occurred between consecutive square-reduce opera-
tions, the spy process would be able to determine
whether the next bit of the secret key is a 0 or 1. Refer
to Figures 1 and 2 for more detail.

In version 1.4.14 of GnuPG, the maintainer fixed
this issue by performing the multiply-reduce opera-
tion in both cases, but simply throwing away the result
in the event of a 0-bit. However, the maintainer noted
that this would incur a “performance penalty.”

3 METHODOLOGY

The PGPG framework consists of three parts: a De-
tector that monitors hardware LLC cache misses; a
Decision-Making Engine, running as part of Protean
code, that receives the miss counts makes decisions
about potential attacks; and. a Defender that uses
Protean code to implement the real-time defense.
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Fig. 3. The PGPG system consists of three major subsystems: a Detector, a Decision-Making Engine, and a Defender. When a
spy process probes an application, such as the GPG microbenchmark, the PGPG system comes into play: 1) The Detector spawns
a Protean process and begins obtaining the LLC misses from the hardware; 2) The Protean process spawns the Decision-Making
Engine, which starts to listen for the LLC miss counts from the Detector; 3) The Protean process also “morphs” into the application
binary. In our case, the GPG benchmark is Proteanized; 4) The Detector sends the LLC miss counts to the Decision-Making Engine;
5) The Decision-Making Engine continuously monitors for an attack; when an attack is occurring (based on a threshold value), it
updates the Lookup Table entry; 6) The Defender ensures that the previously unsafe, but faster, function is nullified (the "X" path) and
that the application uses the safer, but slower, function (the "checkmark" path). This ends up mitigating the attack.

3.1 The Detector

Because the underlying source of Cache-Based Mi-
croarchitectural Attacks (CBMA) is the spy’s ability
to repeatedly flush from and reload the shared value
into the cache from memory, gaining visibility into
run-time cache miss events is a direct mechanism for
detecting such attacks.

The detection mechanism uses the Linux perf API
[2] to configure the hardware to record LLC miss
events. perf support is a standard part of recent
versions of Linux, and allows LLC miss events to be
recorded entirely from user-space. Root permissions
are not required for a process to monitor its own LLC
miss events. We use per £ to continuously monitor the
absolute counts of LLC-misses hardware event gen-
erated by the victim process. These hardware events
arise when a data/instruction has to be fetched from
the DRAM.

The Detector monitors the cumulative cache miss
count and derives the rate at which misses occur to
pass to the Decision-Making Engine in real-time.

3.2 Decision-Making Engine

The Decision-Making Engine receives a continuous
stream of miss rates from the Detector and monitors
them to determine when an attack is in progress. As
shown in Figure 4, the miss rate (derivative of the

LLC miss counts) tends to be very regular, and when
a cache attack is in progress, the miss rate increases
dramatically. Based upon this characterization of the
miss rate, we opt for a simple threshold-based detec-
tion scheme. That is, when the miss rate rises above a
given threshold N, we invoke the Defender.

Of course, it is expected that occasionally the miss
rate will fluctuate above the threshold. This may be
due to context switching, other processes using the
cache, or another reason. However, when an attack
occurs, we observe that the miss rate will consistently
remain above the threshold for the duration of the
attack. Thus, we only invoke the Defender when the
miss rate has exceeded the threshold M consecutive
times.

Due to the large number of cache misses that occur
when the Protean engine is starting up, the Detector
and Decision-Making Engine coordinate to start moni-
toring the application only after Protean has initialized
and when the vulnerable application starts to run. This
prevents the Decision-Making Engine from acting on
the initial cache misses and unnecessarily invoking the
defense.

In real-world scenarios in which additional con-
founding factors may be present, this Decision-
Making algorithm may not be effective. We discuss
further approaches for this problem in Section 5.3.
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Fig. 4. LLC Miss Rates: When the LLC miss rate (delta of the LLC misses) is plotted for both the Victim and the Spy, the attack can
clearly be distinguishable from the baseline rate. The attack is highlighted green area. The threshold for attack detection is shown by

the horizontal yellow line.

3.3 Defender

When the Defender is invoked, it uses Protean code to
transform the vulnerable code into code that resists the
FLUSH+RELOAD attack. This is fundamentally differ-
ent from how Protean code has been used in the past
(i.e., run-time optimizations). While the new, and safe,
code delivers the same end result, its computational
path is significantly altered such that the cache side
channel is eliminated.

Doing this requires the source of both the vulner-
able and safe versions of the code base. Requiring
source code may restrict the use of this technique
somewhat, but there are many cases in which it can
be effective. For instance, GnuPG is an open source
project and the code is freely available for use. It is triv-
ial to compare the vulnerable GnuPG code against a
patched version. Unfortunately, while we would have
liked to demonstrate PGPG protecting the GnuPG
project, building the GnuPG source with Protean code
poses problems. We discuss these in Section 5.1.

As a result, we substitute a microbenchmark that
reflects the code paths GnuPG takes when computing
the RSA Square-Reduce-Multiply-Reduce Exponentia-
tion Algorithm. In the microbenchmark, the main loop
of compute_val, shown in Figure 1, is analogous to
the main loop in mpi_pow in GnuPG.

Protean includes the LLVM [6] compiler to recom-
pile target functions at runtime. When the Defender
is invoked, we transform the LLVM bytecode for the
compute_val function into that produced by a secure
version (shown in Figure 2). In the current iteration
of PGPG, we do this by directly moving the calls to
mul and reduce above the conditional. However, we
discuss more general approaches to generating secure

code in Section 5.2.

4 EVALUATION

We evaluate the PGPG system against the
FLUSH+RELOAD attack on a 16-physical core,
dual socket Haswell server with 124 GB of memory.
The processor is a 64-bit Intel Xeon(R) CPU E5-2630
v3 running at 2.40 GHz. Hyperthreading is enabled,
allowing the processor to support 16 logical cores
per socket. Furthermore, in our experimental setup,
we set N = 5 and M = 10 after having performed
application profiling.

4.1 Attack Detectability

We consider the loss of secret key material (or the end-
result of another attack) to be far worse than can be ad-
dressed by any performance increase. Consequently,
we consider any degradation in the practical security
of the vulnerable PGPG binary when compared to a
secure statically-compiled version to be unacceptable.

PGPG’s Defender produces compiled code func-
tionally equivalent to the safe version and our testing
shows that the safe version takes effect quickly enough
that the FLUSH+RELOAD attack is unable to infer the
secret exponent. Thus, the primary concern is that our
detector may be unable to detect an attack in progress.

In the FLUSH+RELOAD paper, the authors perform
the attack on systems devoid of conflicting processes.
In our testing of their attack on our own systems,
the attack is strongly affected by additional processes
running simultaneously causing cache interference. To
get the attack to work, in practice, requires closing
virtually all extraneous processes.
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Fig. 5. Execution Times for Ten Trial Runs: As can be seen,
the static and Protean versions of the defense/no defense are
close to each other, with minor variances. This illustrates that the
PGPG system introduces negligible overhead.

‘ Vulnerable Safe

Static 3.64s 4.82s

Protean 3.63 s 4.84 s
TABLE 1

Average runtimes for the four cases of the GnuPG
microbenchmark. The “Vulnerable” application binary is the
faster, yet insecure, version, whereas the “Safe” binary is the
slower, yet secure, version.

In contrast, when we test the PGPG Detector, we
use it on a shared multi-user server running dozens of
processes. The amount of extraneous cache evictions,
and therefore misses, on our system should be higher
than, or at least similar to, the worst environment on
which the FLUSH+RELOAD attack can run. In Figure 4,
we can clearly detect the attack, even with the system
noise.

Intuitively, it stands to reason that a sophisticated
adversary could modify its pattern of generating cache
misses to avoid the static threshold or even more so-
phisticated heuristic-based approaches to detecting an
attack in progress (discussed in Section 5.3. However,
the FLUSH+RELOAD attack is critically dependent on
how quickly it can probe memory locations for re-
cent use and often misses instruction retrieval in the
best of cases due to context switching or innocuous
cache evictions. In practice, if the attack does not run
continuously and at a fast rate, it will be completely
ineffectual. Thus, we do not believe an adversary has
effective means to avoid even our relatively simple
detection scheme.

We therefore posit that the PGPG system provides
an equivalent defense to the statically-compiled safe
version.

4.2 Performance Overhead

As our solution ultimately provides no additional
benefit to security over a static approach, it is im-
portant that it maintains the same security benefits
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while negating a substantial part of the performance
overhead for implementing them.

In the common case, we assume no ongoing attack,
and that the binary is free to run at its maximum
speed in a fast, insecure manner. In the event an attack
occurs, the binary will adapt to its slower, secure
runtime and defend against the attack. Intuitively, the
overall runtime of our PGPG binary can be modeled
by the equation:

TE = total execution time
TE = (1— AP)« [E + (AP + SE) AP = attack percentage

I E = insecure execution time
SE = secure execution time

That is, the total execution time (T'E) is a weighted
average of the time spent executing insecure code (I E)
while the attack does not occur, along with the time
spent executing secure code (SE) while the attack
occurs.

As seen in Table 1, our PGPG binary runs in an
average of 3.63 seconds when no attack is detected,
compared to the statically-compiled vulnerable binary
average of 3.64 seconds. As our PGPG binary makes
no intentional optimizations to the vulnerable code
and in fact introduces (minimal) overhead, we con-
sider these execution times equivalent and attribute
the difference to general execution variance. Such vari-
ance can be seen in Figure 5.

Similarly, when we force an attack "detection" im-
mediately after starting the PGPG binary such that
it spends its entire execution time running the safe
encryption routine, we see an average execution time
of 4.84 seconds, compared to the statically-compiled
safe binary average of 4.82 seconds. This corresponds
to only a 0.41% slowdown if the PGPG binary spends
all its time running the secure code.

If we conservatively assume that 20% of the time,
an attack will occur (in practice, we believe an attack
will occur less than 1% of the time), then the overall
average runtime of our PGPG binary can be calculated
as follows:

E[TE] = (0.8 % 3.63s) + (0.2 x 4.845)
= 3.87s
While under conservative attack loads, the ex-
pected total execution time, E[TE] = 3.87s, is still

19.7% faster than the secure statically-compiled code
with an equivalent security guarantee.

5 DiscussioN

5.1 Why a Microbenchmark?

Ideally, PGPG would be able to provide a defense for
GnuPG. Unfortunately, as a Gnu project, GnuPG uses

compiler optimizations inherent to GCC, the Gnu C
Compiler. Protean code uses the Clang [7] compiler,



which is unable to handle these optimizations. This is
also discussed in the Protean Code paper [3].

Consequently, to demonstrate the validity of our
approach, we build a microbenchmark that is rep-
resentative of GnuPG’s main cryptographic algo-
rithm, which we postulate comprises the majority of
GnuPG’s execution time.

GnuPG’s main cryptographic routine can be found
in the mpi_pow function, in a loop that iterates over
the bits of a secret exponent. A particular branch is
only taken if the next bit of the secret exponent is a 1.
Within this branch, long-running multiply and reduce
functions are called. By monitoring the cache timing of
instructions within these functions, the adversary can
infer when they are executed. By inferring when the
corresponding square and reduce functions outside the
branch are executed, the adversary can differentiate
between successive 1s and Os in the secret exponent.

To do this successfully, the instructions within the
square, multiply, and reduce functions must be chosen
carefully. Since it takes approximately 100 or 250 clock
cycles (for cache hits or misses, respectively, assuming
the kernel does not perform a context switch on the
core) to infer whether a given instruction is present in
the cache, checking a single instruction in each of these
functions takes between 300 and 750 clock cycles. It is
important that the spy choose instructions contained
within a loop that gets executed many times, as this
increases the chance that the instruction will still be
cached when the spy process gets a chance to check it.
GnuPG exhibits loops within the relevant functions,
and thus so does our microbenchmark.

Another important consideration for instruction
caching is that even if the instruction is not executed,
it may end up being loaded into the cache. Unlike
data caching, the hardware instruction prefetcher will
attempt to prefetch instructions that are likely to be ex-
ecuted. This means that instructions at the beginning
of a function are likely to be prefetched whether the
function is called or not. Similarly, when instructions
are cached, entire cache lines are filled from memory.
The last few instructions of one function can be fetched
when the following function in memory is prefetched
or executed. Consequently, our microbenchmark func-
tions contain a number of NOP instructions at the
beginning and end of each function, increasing the
length of the functions in memory to model those in
GnuPG.

5.2 Generic Defending

In the current iteration of PGPG, we directly modify
the compute_val function. However, for the overall
PGPG technique to see wide adoption and be used in
other software packages, the modification of a vulner-
able function must be automated.
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This can be done by precompiling the safe source
code of the target function into LLVM bytecode before
the vulnerable Protean binary is compiled and storing
it in a special data section of the Protean binary (as
opposed to the Protean runtime shared library). It can
later be retrieved when the Defender gets invoked and
the Defender can construct a replacement target func-
tion from scratch, as opposed to modifying an existing
function. This approach can scale to support multiple
function replacement in a generic way. However, due
to time constraints, we leave this to future work.

5.3 Advanced Detection Techniques

The existing detector could be made smarter by imple-
menting certain modifications that collect and process
more information from the victim process at run-time.

Our original proposal—and our former detector
implementation—uses the Precise Event-Based Sam-
pling (PEBS) performance counter mechanism [1] to
track LLC-miss events and their source code origin.
Identification of the most-evicted PCs paves way for
multiple discrete defense mechanisms. The Protean
Defense class could be developed such that it uses
this information for an appropriate dynamic function
swapping defense. When an instruction 7 triggers an
event of interest, the PEBS mechanism generates a
PEBS record, which the hardware then logs to an in-
memory buffer. Each PEBS record contains i’s Pro-
gram Counter (PC), the memory address accessed by
1, and the values of the general-purpose registers as
of i’s commit. When the buffer is full, an interrupt
notifies the OS PEBS driver to process the records and
provide a new buffer for the hardware to use.

Modern Intel processors support several PEBS
events. Of particular interest to us is the abil-
ity to track LLC load miss events, which arise
when a data/instruction has to be fetched from
the DRAM. Our previous implementation uses the
MEM_LOAD_UOPS_RETIRED_L3_MISS PEBS event.

We used the built-in Linux per £ [2] kernel support
to gather LLC miss events from the hardware. A
small memory mapped region was allocated for each
thread of the application, and this region was used for
asynchronous communication with the kernel’s perf
mechanism. The kernel logs LLC miss events into this
region until they are processed by the detector.

Our prior detector then builds a map from the key
PCs to the number of LLC miss records received for
those PCs, and reports the rate at which LLC miss
events occur for these "hot" source code lines.

We modified this implementation to our current
detection mechanism of collecting absolute counts
alone, because the simpler approach worked reliably
to detect an attack, and even with an generic defense
approach, we would have no need to identify the



specific cache miss locations unless we had multiple
discrete defenses in place simultaneously.

Furthermore, our future work proposals include
using machine learning techniques to develop a more
robust detector. The detection algorithm can be trained
to recognize the miss pattern created by other pro-
cesses, including a spy process. This pattern can be
used as a signature to differentiate between innocent
large-working set co-runners and a spy.

The caveat to this approach, however, lies in the
fact that the algorithm would succumb to a more
intelligent spy that mirrors the eviction pattern of an
innocent application. The use of PEBS to identify the
highest source of cache misses could be a potential
defense for such an attack.

6 CONCLUSION

In this paper, we introduce the system, with the aim of
overcoming the security-performance gap. Our system
takes advantage of Protean code’s dynamic compila-
tion techniques to swap out fast, yet insecure, code for
slower, yet secure, code. The novelty of our system
lies in the fact that this swapping process can take
place dynamically, leading to an overall speedup in
execution time over always running the statically-
compiled “Safe” version of the application binary.

We test our program against a microbenchmark
that acts as a proxy for the GnuPG cryptographic
suite, all while using the FLUSH+RELOAD cache side-
channel attack. Based on a threshold value, our PGPG
system is not only able to successfully detect the at-
tack, but also mitigates the attack’s efficacy. We model
execution times as an equation and show that we
achieve conservative average gains of 19.7%, with a
worst-case overhead of 0.03%.
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