
Anarchy by Design
Preventing invisible RNG attacks on TLS using SGX

Jeremy Erickson Timothy Trippel{
jericks, trippel

}
@umich.edu

EECS 582, Fall 2016
University of Michigan, Ann Arbor

1 Introduction

In the computer and network security domain, nation
state actors (NSAs), are typically characterized as having
a significant amount of computing resources, intelligent
researchers and engineers, and legal authority that pri-
vate sector organizations do not possess. With this kind
of power, NSAs have many documented cases of using
their strategic advantage to subvert modern computing
and communication systems to gather intelligence [2, 4,
5].

In previous work [1], we investigated how an NSA
could leverage its resources to gain widespread access
to encrypted communications while avoiding public crit-
icism through secrecy and stealth. Specifically, we fo-
cused on a threat model in which the NSA could, through
exploitation, coercion, or another method, acquire supe-
ruser privileges on some fraction of the host machines of
a cloud services provider.

Despite its power, we make one critical assumption
about the NSA that we believe is reasonable given the
existing political and legal climate:

An NSA must perform offensive actions in a
manner of utmost stealth. Detection of offen-
sive actions by any non-NSA personnel will
lead to a full investigation and removal of supe-
ruser privileges on the cloud provider, as well
as damage to public opinion.

Under this constraint, we propose that an NSA may
decide to focus on subverting the Random Number Gen-
erator (RNG) of virtual machines through control of the
hypervisor. This has several attractive qualities. First, it
is possible to achieve control of the RNG without hav-
ing to modify the virtual machine itself, meaning a cloud
tenant, even one that inspects checksums of critical sys-
tem components such as the kernel, is unable to detect
any subversion without specifically searching for arti-
facts of the used technique. Second, with control over

the RNG, cryptographic keys become predictable, and
so there is no need to exfiltrate encryption keys out of
the cloud infrastructure. Encrypted communications can
be monitored from outside the cloud infrastructure with
no extraneous, suspicious key leakage shadowing each
new encrypted message. Third, we can control the RNG
with full precision, so we may generate the output ran-
dom numbers using a previously-defined shared secret.
Thus, the output appears random to all observers, but we
can predict it and therefore decrypt any encrypted com-
munications.

Figure 1: Generating random bytes first without, and then
with, the hypervisor attack. A static value of all 0x66 bytes
is chosen for visibility.

In our previous work, we were able to demonstrate
consistent, practical attacks against both the Linux ker-
nel RNG and the OpenSSL library RNG used by the
Apache2 web server. In this project, we aim to build a
robust defense against this threat using Intel’s new Soft-
ware Guard Extensions (SGX) [3].

2 Background

Intel SGX is a platform in which applications may ask
the processor to reserve a special section of encrypted
memory and special execution space for secure function-
ality. In this paradigm, the enclave application cannot
be tampered with by the operating system or hypervisor,
and its running code can be remotely attested.

As shown in Figure 2, the unprivileged portion of the
application must pass its instructions through the OS and
hypervisor layers. However, once the enclave is running
in privileged memory and verified, the unprivileged ap-

1



Figure 2: Diagram of a virtualized environment on single
host machine using Intel SGX hardware, the Xen hyper-
visor, and libvmi inspection tool. Portions of security-
critical applications, i.e. NGINX and LibreSSL, can ex-
ecute in a secure SGX enclave to prevent an adversary
with access to the hypervisor, i.e. through libvmi, or
OS from subverting security critical tasks, i.e. random
number generation. We note that Xen does not currently
support SGX, but we expect it to soon.

plication may only interact with it through a defined and
approved API, limiting the unprivileged application or
another application from tampering with it.

3 Approach

We aim to demonstrate how developers can provide se-
curity guarantees at the application layer, using Intel’s
SGX technology, for HTTPS servers that prevent RNG
subversion attacks resulting from a compromised OS or
hypervisor. Transport Layer Security (TLS) is a proto-
col that provides an authenticated and confidential net-
work channel of communication. To do so it relies on
implementing cryptographic algorithms to generate se-
cret keys. The generation of secret cryptographic keys in
turn relies on the successful generation of random num-
bers.

Random number generators, included in many crypto-
graphic software libraries, gather sources of entropy to
feed a deterministic psuedo-random number generator.
With knowledge of the entropy pool and pseudo-random
number generation algorithm, all random numbers be-
come easily predictable. If the random number generator
used by a TLS server running on VM in a virtual cloud
environment is compromised by the hypervisor or OS, all
TLS connections emanating from it are not secure. We
note that despite the OS providing randomness directly
from the kernel’s RNG, applications using the OpenSSL

and LibreSSL libraries will maintain their own entropy
pool from which to draw randomness.

We plan to demonstrate how this threat can be miti-
gated by embedding the entropy pool and random num-
ber generator components of the LibreSSL cryptographic
software library in an SGX enclave. This involves sub-
stantial modification to the flow of execution in the NG-
INX and LibreSSL applications, as they will need to ac-
commodate the structural overhead enforced by SGX.

4 Scope

We are attempting to build a working implementation of
NGINX with support for our enclave. To do this, we will
need to support the creation of the web server’s long-
term private key and the corresponding Certificate Sign-
ing Request, and keep this private key in encrypted mem-
ory. Our enclave will also need to support the web server
operations of generating random numbers for ephemeral
session keys and signing TLS Server Exchange messages
with the long-term private key after verifying their in-
tegrity. Depending on whether or not we wish to prevent
the untrusted code from ever coming in contact with the
ephemeral keys, we may additionally need to provide en-
cryption and decryption routines for multiple simultane-
ous flows.

Evaluation of this system’s effectiveness will be chal-
lenging, as Xen does not currently pass hardware sup-
port of SGX to it’s virtual machines (nor does KVM).
This precludes our ability to test our existing attack on
the new system. However, we do plan to evaluate the
performance overhead of this approach, as web servers
are often heavily loaded and a severe degradation of per-
formance when creating new connections would be a no-
table downside.

References

[1] Jeremy Erickson, Timothy Trippel, and Andrew
Quinn. Cloaking Order in Chaos: Subverting the
random number generator via the hypervisor.
2016. URL: https://jeremy-erickson.com/
static_docs/EECS588/paper.pdf.

[2] April Glaser. After NSA Backdoors, Security Ex-
perts Leave RSA for a Conference They Can Trust.
Jan. 30, 2014. URL: https://www.eff.org/
deeplinks/2014/01/after-nsa-backdoors-

security-experts-leave-rsa-conference-

they-can-trust.

2



[3] Ittai Anati et al. Innovative Technology for CPU
Based Attestation and Sealing. Tech. rep. Intel,
2013. URL: https://software.intel.com/
en-us/articles/innovative-technology-

for-cpu-based-attestation-and-sealing.

[4] Olga Khazan. The Creepy, Long-Standing Prac-
tice of Undersea Cable Tapping. July 13, 2013.
URL: http : / / www . theatlantic . com /

international / archive / 2013 / 07 / the -

creepy - long - standing - practice - of -

undersea-cable-tapping/277855/.

[5] Mandient. APT1. Exposing One of China’s Cy-
ber Espionage Units. Feb. 19, 2013. URL: http:
/ / intelreport . mandiant . com / Mandiant _

APT1_Report.pdf.

3


