
Jalapeno
Intel SGX Powered Cryptographic Library

Jeremy Erickson (jericks@umich.edu) Timothy Trippel (trippel@umich.edu)
EECS 582, Fall 2016

University of Michigan, Ann Arbor

Abstract
The wide prevalence of cloud computing has recently
made a category of attacks based on subverting the un-
derlying systems of cloud tenants very attractive. Pre-
vious work has explored hypervisor-based attacks that
stealthily modify the Random Number Generators of
victim virtual machines (VMs) to compromise the se-
cret keys used to initiate secure web connections with
clients. In this paper, we explore using Intel’s Software
Guard Extensions (SGX) to provide a single root-of-trust
for security-critical operations and extend the end-to-end
security model commonly deployed applications in un-
trusted virtual cloud environments. We find that SGX
provides sufficient security guarantees to do this, and
present Jalapeno, an SGX-enabled cryptographic library
for enabling secure TLS sessions on untrusted platforms.
Jalapeno has a simple API, supports two of Mozilla’s ten
recommended modern cipher suites, and is designed to
be dynamically linked into larger projects. Lastly, we
evaluate the performance of the core cryptographic op-
erations implemented in Jalapeno and compare it to the
performance of the same operations implemented in a
widely used cryptographic library, OpenSSL.

1 Introduction

In the computer and network security domain, the Na-
tion State Actor (NSA), is typically characterized as the
strongest adversary imaginable. With nearly an unlim-
ited amount of computing resources, funding, intelligent
cryptographers and engineers, and the legal authority to
get access to almost any information it needs, this adver-
sary has been able to use its strategic advantages to create
sophisticated attacks which consistently subvert modern
day computing and communication systems [5, 6, 7, 8].

In previous work [5], we investigated how an
NSA could leverage its resources and abilities to gain
widespread access to modern communications and web

Figure 1: Hypervisor attack on the Linux Random Num-
ber Generator (RNG) as previously explored by [5]

services while avoiding public criticism through secrecy
and stealth. Specifically, we focused on a hypothetical
scenario in which an NSA has, through exploitation, co-
ercion, or another method, acquired superuser privileges
on some fraction of the host machines of a cloud ser-
vice provider (i.e. has access to the hypervisor), such
as those operated by Amazon (AWS) [12], Microsoft
(Azure) [16], and Google (Compute Engine) [14].

We developed an attack against the Random Num-
ber Generator (RNG) of virtual machines through con-
trol of the hypervisor [5]. Through the hypervisor, the
adversary can leverage full control over the output of
/dev/random and /dev/urandom by trapping calls to read
these file objects, as shown in Figure 1. This attack has
several attractive qualities. First, it is possible to achieve
control of the RNG without having to modify the vir-
tual machine (VM) itself, meaning a cloud tenant, even
one that inspects checksums of critical system compo-
nents such as the kernel, is unlikely to detect any subver-
sion. Second, with control over the RNG, cryptographic
keys become predictable, and so there is no need to ex-

1



filtrate encryption keys out of the cloud infrastructure.
Encrypted communications can be monitored, dragnet-
style, from outside the cloud infrastructure with no suspi-
cious key leakage shadowing encrypted messages. Third,
since we can control the RNG with absolute precision, it
is possible to cause the output random numbers to still
appear truly random to any fourth party, thus facilitating
the concept of a ”secure backdoor” that is very attractive
to governmental organizations. This attack is weaponiz-
able, stealthy, and has the potential to subvert the confi-
dentiality of large swaths of the public Internet.

We believe that the community needs a defense against
such a powerful attack, and propose to use recently-
released hardware root-of-trust capabilities to provide
secure cryptographic primitives, even on software run-
ning on an untrusted third-party’s hardware. In Au-
gust of 2015, Intel included Software Guard Extensions
(SGX) [9] in its Skylake line of processors. SGX pro-
vides a hardware mechanism for developers to crypto-
graphically verify the software that is being run on a
given machine. Intel provides a service that can attest to
the hardware integrity of the server in question, and the
hardware itself can attest to the integrity of a given appli-
cation running in a protected ”Enclave” mode. Enclave
memory is inaccessible to software running outside the
enclave, even to the host Operating System (OS) or hy-
pervisor running in privilege ring 0, and is encrypted to
prevent even physical cold-boot attacks. Thus, by lever-
aging SGX, we are able to perform critical RNG and
cryptographic functions in a manner that precludes in-
terference by a malicious third party.

In this project, we build a secure cryptographic library
with the following key properties and features:

• Sensitive key material is kept solely inside the en-
clave, and is incapable of being leaked or predicted.

• Key material is securely ”sealed” (encrypted) and
persisted to disk to avoid loss of data in failure con-
ditions.

• Support for Elliptic Curve Diffie-Hellman key ex-
change and full Transport Layer Security (TLS) ses-
sion key generation.

2 Background

2.1 Software Guard Extensions
In 2015 Intel released a new feature with their Skylake
line of processors known as Software Guard Extensions
(SGX). SGX provides developers with a secure execu-
tion environment, similar to ARM’s TrustZone technol-
ogy. However, SGX has very distinct capabilities than

Figure 2: Diagram of a virtualized environment on single
host machine using Intel SGX hardware, the Xen hyper-
visor, and libvmi inspection tool. Portions of security-
critical applications, i.e. NGINX and LibreSSL, can ex-
ecute in a secure SGX enclave to prevent an adversary
with access to the hypervisor, i.e. through libvmi, or
OS from subverting security critical tasks, i.e. random
number generation. We note that Xen does not currently
support SGX, but we expect it to soon.

that of TrustZone. The secure execution sandbox that
SGX provides, called an enclave, has user-level privi-
leges and isolates the software contained in the enclave
from the outside, untrusted, environment. Even, if the
operating system, hypervisor, BIOS, or other hardware
on the motherboard is compromised, only a denial-of-
service (DoS) attack can be mounted. SGX preserves
both the confidentiality (barring side-channel attacks)
and integrity of the computation performed, and data
stored, inside the secure enclave. Additionally, the en-
clave encrypts any code and data stored in a region of
memory known as the Enclave Page Cache (EPC), which
is a region of memory defined by the BIOS. Anything
written to, or read from, the EPC is encrypted, or de-
crypted, by the hardware on the processor’s die [9].

Software applications that are built on the SGX plat-
form are architected as shown in Figure 2. SGX appli-
cations are divided into two main components: trusted
enclave code and untrusted code, as shown in Figure 4.
The trusted enclave code is the portion of the application
that executes in the secure enclave. Enclave code can ac-
cess both encrypted enclave memory, the EPC, and un-
encrypted shared memory. Untrusted code can only ac-
cess unencrypted shared memory. Untrusted code may
initialize the execution of trusted enclave code by invok-
ing an ecalls. Similarly, trusted enclave code can invoke
the execution of untrusted code by an invoking an ocalls.
The transfer of control flow between trusted code and un-
trusted code can only be done through the use of ecalls

2



and ocalls. As described by Weisse et al. [3], the context
switching between untrusted and trusted code invoked by
ecalls and ocalls is similar to the context switching be-
tween VMs accomplished by VMENTER and VMEXIT
with Intel’s VT-x technology. To facilitate SGX ap-
plication development, Intel provides an SGX software
development kit (SDK) [13] to easily implement ecalls
and ocalls by providing a tool that auto-generates “glue
code” which performs state saving and restoring func-
tions when ecalls and ocalls are made outside and within
the secure enclave. The saving and restoring of execution
state in and out of the secure enclave that happens during
enclave context switches incurs significant overhead, as
demonstrated in [3]. As a result, it is ideal for SGX on
developers to minimize the use of ecalls and ocalls.

Since SGX enclaves are a sand-boxed context with
user level privileges, there are specific limitations to what
operation can be done inside an enclave. For instance,
hardware device I/O, handling of interrupts, and paging
are all operations that require assistance from the Oper-
ating System. Consequently, virtually all SGX applica-
tions must rely to some extent on untrusted software, and
must remain vigilant to validate any externally-sourced
data.

Essentially, Intel’s SGX enables the secure execution
of software in untrusted environment by allowing soft-
ware developers to only trust Intel and the processor die
they have manufactured. Additionally, Intel provides a
remote attestation mechanism that allows users to verify
that they are interacting with software contained in a real
SGX enclave. The security guarantees Intel’s SGX tech-
nology provides enable secure computation in untrusted
cloud environment. Software developers that want to de-
ploy applications and services on third party cloud com-
puting infrastructures need only rely on a single root of
trust: Intel’s processor die.

2.2 Transport Layer Security

TLS underpins the confidentiality and integrity of the
modern web. However, understanding how it works is
integral to building a cryptographic library that supports
the necessary required operations. TLS works by per-
forming a session key negotiation between client and
server, then symmetrically-encrypting all communica-
tions after the initial negotiation. [11, 10]

To start, the client will send the server a ClientHello
message. The ClientHello will provide 28 random
bytes, and a list of cipher suites that the client supports.
The server will receive the ClientHello, will pick a ci-
pher suite to use for the remainder of the connection, and
send the client a ServerHello containing the picked ci-
pher suite and its own set of 28 random bytes.

Jalapeno currently supports the

TLS ECDHE XXX WITH AES 128 GCM SHA256 ci-
pher suites, where ”XXX” can be replaced with the
Certificate Authority’s signing mechanism (ECDSA or
RSA). These are two of Mozilla’s ten recommended
cipher suites for modern browsers [2]. The ECDHE at
the front refers to the Pre-Master Secret key generation
algorithm, in this case Elliptic Curve Diffie Hellman
Ephemeral; the AES 128 GCM refers to the symmetric ci-
pher used to encrypt and decrypt messages; and SHA256

refers to the hash algorithm used in the Pseudo-Random
Function (PRF).1

Next, the server will send the client its Certificate, al-
lowing the client to authenticate the server. This cer-
tificate will contain the server’s public key, and will be
signed by a valid Certificate Authority that the client
trusts.

The server and client will send each other
ServerKeyExchange and ClientKeyExchange

messages, which contain the necessary information for
generating the Pre-Master Secret. The mechanism for
doing so differs between different cipher suites,2 but in
the case of ECDHE, the client and server simply send each
other their public keys3. Using their own private keys
and each others’ public keys, as well as the 56 random
bytes exchanged earlier in the connection, both the client
and server compute the shared Pre-Master Secret. This
Pre-Master Secret is used, with the 56 random bytes
and static string ”master secret”, by the PRF to generate
the Master Secret, and the Master Secret is used, again
with the 56 random bytes and a new static string ”key
expansion”, by the PRF to generate MAC keys, write
keys, and Initialization Vectors (IVs) for the client and
server. In AES 128 GCM, the client and server write
keys and IVs are used to encrypt and decrypt session
messages.

To conclude the handshake, the client and server will
send each other Finished messages with a verification
blob comprised of pseudo-random bytes generated from
the Master Secret, a hash of the handshake up to this
point, and the string literals ”client finished” and ”server
finished”, respectively. Once both the client and server
verify these messages, the handshake is complete and
subsequent data is encrypted with appropriate session
keys.

1The PRF is a function for deterministically generating arbitrary
numbers of pseudo-random bytes given a secret and seed value. This
is useful for generating additional secrets using secrets that are already
available.

2For instance, in some suites the client simply picks a pre-master
secret, encrypts it with the the server’s public key, and sends it to the
server.

3The client may need to generate a public/private key pair for the
connection, whereas the server can reuse its primary public key.

3



Figure 3: Jalapeno Cryptographic Software Library API.
The function definitions shown above, describe the oper-
ations currently supported by the Jalapeno cryptographic
library. Each function either instantiates an SGX enclave
or immediately invoke ecalls into an SGX enclave where
a specific sensitive operation is performed. In the fu-
ture we plan to expand this interface to support more
cipher suites and other security centric protocols (other
than TLS).

3 Methodology

Our goal is to design a cryptographic library that can sup-
port TLS sessions for modern web browsing. Existing
libraries, such as OpenSSL [18] and LibreSSL [15], are
designed around easy access to important key material
for authentication and encryption. However, Jalapeno
aims to restrict access to secret key material to code run-
ning in the enclave. Therefore, all authentication and en-
cryption functions that require access to secret key mate-
rial must be implemented within the enclave. All actions
that occur outside the enclave are untrusted.

In evaluating the fundamental actions that must be
supported for a TLS session to occur, we have developed
a public API that supports the following:

• Creation of public/private key pairs.

• Encryption of plaintext into ciphertext.

• Decryption of ciphertext into plaintext.

We have also implemented less-interesting, but neces-
sary, functions to initialize the enclave, delete key pairs,
and print out debug information.4 Jalapeno’s public API
is presented in Figure 3.

Figure 4: Jalapeno SGX Shared Library Software Archi-
tecture. The Jalapeno library is architected according to
the SGX application model, with both a secure enclave
code component and traditional untrusted code compo-
nent. Jalapeno is compiled as a Linux shared object.
Jalapeno is designed to be incorporated into existing se-
curity critical applications that are typically deployed in
untrusted cloud environments, like the NGINX [17] or
Apache2 [20] web servers.

3.1 Asymmetric Key Creation

Actually generating public/private key pairs is straight-
forward from within the Enclave. The SGX included li-
braries provide functionality to generate ECDSA 256-bit
key pairs within the context of a particular enclave’s ex-
ecution. As we do not currently attempt to support alter-
native key pair types, this suffices.

What is more interesting is the policy we have chosen
to manage multiple key pairs in a given enclave. While
a typical use case may assume that a given web server
will host only a single website, and therefore only need
a single key pair, in reality many production servers host
multiple TLS-enabled websites. Jalapeno supports the
creation and storage of multiple key pairs simultaneously
and allows untrusted (non-enclave) code to identify them
by the corresponding public key. Key pairs are stored in
a fixed size array, currently set to a size of 64. Keys
may be invalidated (lazy deletion) at will, and new keys
will be stored in the lowest available index. Key pair
access incurs a linear search across the entire key pair
array. We intentionally do not short-circuit this search or
use a faster data structure to avoid a timing side channel.

To protect against failure conditions, we seal this key
pair array to disk after any modification to the data struc-
ture. This requires using SGX’s sealing functionality to
encrypt the key pair array and an OCALL to our un-
trusted code to write this encrypted data structure to disk.
If on any access to the in-memory key pair array, we de-

4Debug functions will necessarily be removed before the enclave is
ready for real-world use.

4



tect that it is not initialized (which may happen after the
application is restarted, the server is power cycled, etc.)
we will attempt to load it from disk. This also requires an
OCALL to read the encrypted data structure from disk,
but SGX’s unsealing procedure performs a validity check
on the data structure before reconstructing it into our key
pair array. A failure condition during an update will
cause the update to fail, but should not negatively im-
pact our stored key pair array. We don’t anticipate this
will cause any problems, as asymmetric keys are not typ-
ically automatically provisioned, but provisioned as part
of a new manual site installation. We consider failure
conditions for the persistent storage medium to be ad-
dressed through automated backup systems, and thus we
consider it a solved problem outside the scope of this pa-
per.

3.2 Encryption and Decryption

The SGX included libraries conveniently also include
functionality to generate 256-bit shared Elliptic Curve
Diffie Hellman (ECDH)5 secrets, perform AES 128-bit
GCM encryption and decryption on a buffer, and gener-
ate SHA256 hashes. Notably, it does not provide TLS’s
PRF or an HMAC function. Therefore, following RFCs
2246 and 5246 [11, 10], we implemented our own com-
pliant PRF and HMAC functions.

In a TLS handshake, the client and server will ex-
change public keys and 28-byte random nonces, then
begin sending encrypted payload messages. The server
will need to perform encrypt and decrypt functions, and
Jalapeno provides these directly in its API. The untrusted
code may pass the enclave the plaintext (or ciphertext)
and these four public parameters, and receive the cor-
responding ciphertext (or plaintext). Using the pro-
vided ECDH function, provided client public key, and
retrieved server private key (using the server’s public
key), Jalapeno will compute the shared TLS Pre-Master
Secret. The Pre-Master Secret and two random nonces
yield the Master Secret using the PRF function, and the
Master Secret with the PRF function yield the various
keys used by the SGX-provided AES encryption and de-
cryption functions to manipulate the payload.

Currently, Jalapeno recomputes these session keys for
every encrypt or decrypt operation. This is inefficient,
but as shown in Figure 5, does not appear to incur a sig-
nificant fixed cost when compared against the cost of en-
crypting buffers of 10KB or larger. We can improve this
by caching these keys for the duration of the session and

5The difference between ECDH and ECDHE algorithms is simply
that in the latter, instead of using the keypair associated with the site’s
certificate, the server generates a new keypair for each connection,
signs it with the certificate’s keypair, and deletes it after the session
closes.

we intend to in future work. However, we have avoided
implementing this logic so far, as we anticipate the pre-
cise requirements to become more apparent as we inte-
grate with a production web server.

4 Evaluation

We evaluated the performance of the core cryptographic
operations incorporated into the Jalapeno library with re-
spect to the performance of the same cryptographic oper-
ations incorporated into the widely used OpenSSL [18]
cryptographic library. We also provide an analysis of the
overhead incurred by ecalls and ocalls that Jalapeno op-
erations invoke when jumping in and out of the SGX en-
clave. The main goal of our evaluation was to provide
insights into the performance loss suffered when per-
forming sensitive cryptographic computations in an SGX
enclave. Our evaluation indicates that performance loss
is manageable and most likely worth the added security
benefits of utilizing Intel’s SGX technology to perform
sensitive computations in untrustworthy cloud environ-
ments.

4.1 Encryption and Decryption
We evaluate how Jalapeno performs compared with
OpenSSL when encrypting and decrypting various
packet sizes. We utilize the clock gettime function with
the CLOCK PROCESS CPUTIME ID parameter in the
Linux C Standard Library to measure the execution time
of the AES128-GCM encryption and decryption func-
tions in Jalapeno. To measure the execution times of
the AES128-GCM encryption and decryption functions
in OpenSSL we used the UNIX time command and ac-
quire the real time.

Figure 5 shows the execution times of the encryption
and decryption functions in Jalapeno vs. OpenSSL. Data
packet sizes of 10, 100, 1,000, 10,000, and 100,000 bytes
were encrypted and decrypted using both libraries. For
each packet size 100 trials were run and the means were
plotted. The error bars indicate the standard deviation of
execution times for the 100 trials for each packet size.

At first glance, it might seem that Jalapeno drastically
out-performs OpenSSL, even with performance over-
head incurred from SGX ecalls and ocalls. However,
when deciphering the plots in Figure 5, it is vital to con-
sider how the execution times of each library’s encryp-
tion and decryption functions were measured. OpenSSL
functions were measured with the UNIX time command,
and take into consideration the time it takes to load
OpenSSL into memory and begin program execution.
Jalapeno functions were measured using calls to time
functions in the C Standard Library, a time measure-
ment which does not take into consideration the time it

5



Figure 5: Execution times of AES128-GCM encryp-
tion and decryption functions in Jalapeno vs. OpenSSL.
The execution time of AES encryption/decryption with
Jalapeno was measured using the time functions in the
Linux C Standard Library, which did not include pro-
gram loading time in the measurement. The execution
time of AES encryption/decryption with OpenSSL was
measured using the UNIX time command, which in-
cluded program loading time in the measurement. It is
important to note the general trend indicated by each line
plot, not the difference between the two lines, as different
measurement mechanisms had to be used. Jalapeno per-
forms worse than OpenSSL: a greater exponential-like
increase in execution time when encrypting/decrypting
increasing data packet sizes. This is expected as SGX
requires copying the memory containing the cipher-
text/plaintext to and from the secure enclave’s encrypted
memory (EPC) for encryption/decryption operations.

takes to load Jalapeno into memory and begin its exe-
cution. Because of this difference, it is wise to analyze
the trend of each OpenSSL and Jalapeno line, in both
encryption and decryption plots, rather than the differ-
ence between them. With this in mind, it is clear that the
execution times of Jalapeno’s encryption and decryption
functions increase rapidly as larger the packet sizes are
input. This is mostly due to the fact that the Jalapeno en-
cryption/decryption functions invoke an immediate ecall
which must copy the plain-text/cipher-text data packet,
byte-by-byte, into enclave memory before the encryp-
tion/decryption algorithm can begin. In OpenSSL, there
is no ecall overhead, and its encryption/decryption exe-
cution times scale better with packet size.

Figure 6: Execution times of functions in Jalapeno vs.
OpenSSL that generate 256-bit elliptic curve (EC256)
key pairs. The execution time of generating EC256
key pairs with Jalapeno was measured using the time
functions in the Linux C Standard Library, which did
not include program loading time in the measurement.
The execution time of generating EC256 key pairs with
OpenSSL was measured using the UNIX time command,
which included program loading time in the measure-
ment. It is important to note the general trend indicated
by each line plot, not the difference between the two
lines, as different measurement mechanisms had to be
used. Jalapeno performs similar to OpenSSL: a linear
increase in execution time when generating increasing
numbers of key pairs.

4.2 Elliptic Curve Key Pair Generation

We evaluate how Jalapeno performs compared with
OpenSSL when generating 256-bit elliptic curve
(EC256) key pairs. We utilize the clock gettime func-
tion with the CLOCK PROCESS CPUTIME ID param-
eter in the Linux C Standard Library to measure the exe-
cution time of the EC256 key pair generator function in
Jalapeno. To measure the execution times of the EC256
key pair generation function in OpenSSL we used the
UNIX time command and acquire the real time.

Figure 6 shows the execution times of the 256-bit el-
liptic curve key pair generation functions in Jalapeno vs.
OpenSSL. Varying number of key pairs were sequen-
tially generated, 1, 2, 4, 8, 16, 32, and 64 key pairs, using
both libraries. For each number of sequentially generated
EC256 key pairs, 100 trials were run and the means were
plotted. The error bars indicate the standard deviation of
execution times for the 100 trials for each set of key pairs
generated.

Similar to the encryption and decryption times shown
in Figure 5, at first glance, it may seem that Jalapeno out-

6



performs OpenSSL when generating EC256 key pairs.
Again, when deciphering the plots in Figure 6, it is
vital to consider how the execution times of each li-
brary’s EC256 key pair generation functions were mea-
sured. Consequently, it is again wise to analyze the
trend of each line as a whole in Figure 5, rather than
the difference between them. With this in mind, it seem
Jalapeno’s EC256 key pair generation function performs
quite similarly to the EC256 key pair generation function
in OpenSSL. This seems logical as the ecall that is imme-
diately invoked by calling the EC256 key pair generation
function in Jalapeno does not requiring copying large
buffers of data into the SGX enclave. Rather, the ecall
simply transfers the execution control flow to the en-
clave where the key generation computation is launched.
The private key is stored within the enclave (which seals
and stores a back up on disk), and only the public key
is transferred out of the enclave when the ecall returns.
Since the keys have a fixed size, the number of public
key bytes transferred out of the enclave remains the same
upon every invocation of the EC256 key generation ecall.
Therefore, the performance of Jalapeno is similar to the
performance of OpenSSL: the time to generate multiple
key pairs increases linearly with the number key pairs
requested.

5 Related Works

To the best of our knowledge, using the hypervisor to
poison a random number generator has only previously
been explored by Alt et al. [4] and Erickson et al. [5].
In the first work, the authors explored three ways to poi-
son the output of the Linux RNG, one of which involved
modifying the QEMU[19] emulator to intercept calls to
specific RNG functions in a VM and alter their return
values. Escalating this attack, Erickson et al. showed
how using a flexible virtual machine introspection (VMI)
tool, closely coupled with the Xen hypervisor, an at-
tacker can attach to a running VM, trap function calls
to the Linux RNG, and alter their return values. They
demonstrate that using a VMI tool allows the attacker
to dynamically adapt their attack to target cryptographic
applications running within a VM instance as well. The
goal of our work here is to defend against these kinds of
attacks by leveraging Intel’s SGX technology to enable
trustworthy computing in untrusted environments.

Weisse et al. [3] have provided the first performance
analysis of the Intel’s SGX architecture. They found that
since invoking ecalls and ocalls to jump into and out of an
SGX enclave can incur cycle overheads between 8,200
and 17,000 cycles, their can be a significant performance
overhead to incorporating the use of SGX technology
into existing applications. Given that system calls cannot
be invoked from within an enclave they require the invo-

cation of an ocall to first exit the enclave, as previously
mentioned in Section 2.1. Weisse et al. measure the per-
formance overhead incurred by porting popular system
call heavy applications with intensive network require-
ments, such as memcached, openVPN, and lighttpd, to
the SGX application architecture. They found that per-
formance degradation, with regards to network latency
and throughput was as high as 79% in some cases. They
propose a mechanism, called HotCalls, to replace the
ecall and ocall SGX enclave interface, that trades pro-
cess thread resources for SGX application performance
gains. Their approach to SGX ecalls and ocalls, Hot-
Calls, is able to provide a 13–27x speedup compared to
the existing SGX enclave interface.

In 2014, Microsoft published Haven, an SGX-enabled
platform for protecting unmodified application data from
privileged processes on third-party hardware. Haven
works similar to the container model, where each appli-
cation is isolated in its own runtime environment, and
splits the Operating System into two main components.
The untrusted kernel component manages the hardware
resources of the server, while the trusted component,
replicated in each application’s SGX enclave, provides
a Windows-compliant ABI that manages threading, vir-
tual memory, and file system access. Haven takes the
approach of attempting to migrate entire applications in-
side the enclave in a general fashion. While this may
make adoption of SGX possible for some applications, it
has two primary downsides. First, Haven is monolithic,
cluttering each enclave with the majority of the Windows
runtime OS. This makes its memory usage inefficient,
and its inability to handle basic operations such as inter-
rupts that cannot be handled within the enclave lead to
performance penalties of 13% in the best case, 31-54%
in the common case, and in the wost case, only described
as ”relatively poor”. Second, Haven’s monolithic nature
makes it problematic to verify for security guarantees. In
comparison, Jalapeno aims to provide a verifiable code
base to handle a specific task. While Jalapeno is not yet
mature enough to conclude much about its eventual per-
formance, we anticipate dramatically better performance
than Haven is able to provide. Jalapeno also allows si-
multaneous operation of non-SGX applications on the
same unmodified OS and hardware.

6 Discussion

6.1 Load Balancing
One of Jalapeno’s key considerations is that the secret
key material cannot be exported outside the enclave.
However, real world systems, particular at scale, require
distribution across multiple servers, and often across ge-
ographically diverse data centers. In this paper, we pri-

7



marily focus on the use case of a single web server re-
quiring the ability to host web content to a limited set
of users, but Jalapeno is extendable to a fully distributed
setup for load-balanced operation and arbitrarily extensi-
ble throughput.

Jalapeno already handles server failure conditions by
sealing[1] its key material to disk in an encrypted form.
Currently in our development enclave, this key material
is encrypted with the Signing Identity, the default option.
The Signing Identity refers to the public key used to sign
the enclave, and in our development version, this is a de-
bug key. However, a production enclave would have a
Signing Identity that in turn is signed by Intel and would
be controlled by the Enclave developer. In this form,
additional enclaves, also signed with the same Signing
Identity, can unseal the key material and use it. Thus, the
ability for the enclave’s key material to be exported out-
side the enclave is reduced to the security of the Signing
Identity’s private key.

However, another mode is possible with trivial modi-
fication. When sealing the key material, we can option-
ally specify that it be encrypted using the Enclave Iden-
tity. The Enclave Identity is an entity that is formed by
hashing the enclave memory as it is initially being con-
structed, and is unique to the exact enclave being exe-
cuted. However, this enclave can be executed on multiple
machines, each constructing an identical Enclave Iden-
tity and therefore able to unseal the keys. Since a second
enclave must be functionally identical, by simply ensur-
ing that the enclave code has no functionality to export
the key material in any unsealed form, we ensure that any
enclave able to unseal the secret key material will be un-
able to export it. This does, however, preclude software
updates to the enclave code base, as updated enclaves
will be unable to access the key material of previous ver-
sions. Our development code uses the Signing Identity
for convenience, but there is no technical barrier to using
the Enclave Identity, and we plan to do so in later ver-
sions of Jalapeno and before making it available for use
in real systems.

6.2 Integration with a Production Web
Server

We have performed only limited investigation into what
it will take to integrate Jalapeno with a production-grade
web server. In particular, we have in prior work[5]
explored the Apache2 web server and OpenSSL cryp-
tographic library. OpenSSL is widely regarded to be
poorly maintained, and a successor project, LibreSSL
has sprung up to take its place with a backwards-
compatible API. We found the Apache2 code base to be
similarly difficult to interpret, and decided to explore an-
other popular web server, NGINX. Our preliminary ex-

ploration of these four code bases leads us to believe that
the most straightforward path for integrating Jalapeno in
a production web server is to fork and modify the code
bases of the NGINX and LibreSSL code bases.

One potentially-large complication for our efforts is
that production web servers are written in a particularly
abstract object-oriented form. Connections will have
properties that refer to metadata such as the connec-
tion type, which may refer to a TLS connection or not.
TLS connections will have further properties that specify
things like the specific cipher suite being used. While we
have not yet tracked down the precise mechanisms used
for encrypting and decrypting TLS traffic in LibreSSL,
we anticipate that it is sufficiently abstract that it may be
more difficult than simply shimming an ”encrypt” func-
tion and redirecting its execution to use Jalapeno instead.
We plan to explore this further in future work, but we an-
ticipate this will require a substantial engineering effort
to accomplish.

7 Conclusion

Ultimately, Jalapeno is only one step towards updating
end-to-end security for cloud computing, but it’s an im-
portant step. Adversaries with control over the cloud
computing base can currently subvert privileged cryp-
tographic operations, and Jalapeno is the first crypto-
graphic library that leverages hardware protections to
guarantee that secret key material cannot be leaked or
tampered with. Our performance results show that there
is some penalty to moving these operations into an En-
clave, but our plans to enable load-balancing will still al-
low Jalapeno to scale to meet a distributed workload. Go-
ing beyond the work presented in this paper, future work
will entail full integration into a production web server
and a full system performance analysis that can com-
prehensively analyze the security/performance trade-off
space.

8



References

[1] Alexander B. Introduction to Intel R© SGX Seal-
ing. May 4, 2016. URL: https://software.
intel . com / en - us / blogs / 2016 / 05 / 04 /

introduction-to-intel-sgx-sealing.

[2] Julien Vehent. Security/Server Side TLS. Oct. 31,
2016. URL: https : / / wiki . mozilla . org /
Security/Server_Side_TLS#Recommended_

configurations.

[3] Ofir Weisse, Valeria Bertacco, and Todd Austin.
“Regaining Lost Cycles with HotCalls: A New
Fast Interface for SGX Secure Enclaves”. In: Pro-
ceedings of the 44th International Symposium
on Computer Architecture (ISCA). Under submis-
sion. 2016.

[4] Matthew Alt et al. Entropy Poisoning from the Hy-
pervisor. Unpublished class project. 2015. URL:
https://courses.csail.mit.edu/6.857/

2016/files/alt-barto-fasano-king.pdf.

[5] Jeremy Erickson, Timothy Trippel, and Andrew
Quinn. Cloaking Order in Chaos: Subverting the
random number generator via the hypervisor. Un-
published class project. 2015. URL: https : / /
jeremy - erickson . com / static _ docs /

EECS588/paper.pdf.

[6] April Glaser. After NSA Backdoors, Security Ex-
perts Leave RSA for a Conference They Can Trust.
Jan. 30, 2014. URL: https : / / www . eff .

org / deeplinks / 2014 / 01 / after - nsa -

backdoors-security-experts-leave-rsa-

conference-they-can-trust.

[7] Olga Khazan. The Creepy, Long-Standing Prac-
tice of Undersea Cable Tapping. July 13, 2013.
URL: http : / / www . theatlantic . com /

international / archive / 2013 / 07 / the -

creepy - long - standing - practice - of -

undersea-cable-tapping/277855/.

[8] Mandient. APT1. Exposing One of China’s Cy-
ber Espionage Units. Feb. 19, 2013. URL: http:
//intelreport.mandiant.com/Mandiant_

APT1_Report.pdf.

[9] Frank McKeen et al. “Innovative instructions and
software model for isolated execution”. In: Pro-
ceedings of the 2nd International Workshop on
Hardware and Architectural Support for Security
and Privacy. 2013. URL: http://dl.acm.org/
citation.cfm?id=2488368.

[10] T. Dierks and E. Rescorla. The Transport Layer
Security (TLS) Protocol, Version 1.2. RFC. 2008.
URL: https : / / tools . ietf . org / html /

rfc2246.

[11] T. Dierks and C. Allen. The TLS Protocol, Version
1.0. RFC. 1999. URL: https://tools.ietf.
org/html/rfc2246.

[12] Amazon Web Services. URL: https : / / aws .

amazon.com/.

[13] Intel Corporation. Intel SGX Software Develop-
ment Kit (SDK). URL: https : / / software .

intel.com/en-us/sgx-sdk.

[14] Google Cloud Compute. URL: https://cloud.
google.com/.

[15] LibreSSL. URL: https://www.libressl.org/.

[16] Microsoft Azure. URL: https : / / azure .

microsoft.com/en-us/.

[17] NGINX. URL: https://www.nginx.com/.

[18] OpenSSL Project. URL: http://www.openssl.
org/.

[19] QEMU: Open Source Processor Emulator. URL:
http://wiki.qemu.org/Main_Page.

[20] The Apache HTTP Server Project. URL: https:
//httpd.apache.org/.

9


