Jalapeno

(joll-ah-pee-no)

Jeremy Erickson and
Timothy Trippel

Motivation

e \We created a malicious
hypervisor that attacks VM RNGs

e \Works against both Linux kernel
and ApacheZ2 -- nearly invisible

e |magine an AWS scenario --
Since keys can be remotely
predicted, no need to exfiltrate

e Any cyber superpowers that may
have the capabilities to do this in
the real world?

Linux Kernel RNG

* inerrupts

Saved Seed ‘4— Thread Reaps
4@%;’ mev “ﬂia} Network Devices |
Pool Set, Open, Register
Block Device Times
(Hard Disk)

Input Device(s)

Device IDs

On Boot

tisnhlacking
Entropy
Pool

https://courses.csail.mit.edu/6.857/201
6/files/alt-barto-fasano-king.pdf

Real random bytes

dd if=/dev/urandom count=1 bs=10 2>/dev/null | xxd
362b 3f69 cdh8 fce9 64f1 6+ 2L 5 i
dd if=/dev/urandom count=1 bs=10 2>/dev/null | xxd
6666 6666 6666 6666 6666 frffffrffff

Virtual Cloud Environment
SGX Enclave
LibvMI Application Application
(NGINX & LibreSSL)

Test VM
e Intel Software Guard Extensions (SGX) m
e Perform RNG and private key storage in Xen Hypervisor

hardware-supported secure enclave
o Even hypervisor cannot inspect/modify!

Approach Overview

Intel SGX Hardware

e Expose APIs to application to perform privileged operations (sign, decrypt,

etc.) without accessing key material

o Private keys guaranteed to never leave the enclave
m *(we have ideas for how to replicate them across machines without leaking them)

We’re building an open-source SGX enclave crypto library -- with a focus on
remote attestation that keys are unleakable and unpredictable.

Current Status

V1 Create working SGX Enclave

V1 Generation of asymmetric key pairs

V1 Sealing of key pairs to disk for secure persistent storage + recovery on failure

V1 Implementation of core asymmetric crypto functions (sign, decrypt)
Generation of symmetric key material (with PFS, derived from multiple parties)
Implementation of core symmetric crypto functions (encrypt, decrypt)
Convert existing “untrusted” application into library

Build test application that measures performance overhead

End Goal

For this class:

e Working crypto library to be used by
applications in untrusted environments

e Test application that compares
performance of crypto operations in and
out of enclave

e Performance evaluation detailing
overhead incurred by using SGX enclaves
for crypto operations

Ultimately:

e Secure Webserver: full integration with

LibreSSL / NGINX
o Will require substantial rewriting of how
NGINX performs its TLS operations
o Fully backwards-compatible with existing
TLS client implementations, just adds new
security guarantees
e Generic SGX Crypto API for integration

into future applications

